Skip to main content

Advertisement

Log in

Automatic Segmentation of Bone Canals in Histological Images

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The literature provides many works that focused on cell nuclei segmentation in histological images. However, automatic segmentation of bone canals is still a less explored field. In this sense, this paper presents a method for automatic segmentation approach to assist specialists in the analysis of the bone vascular network. We evaluated the method on an image set through sensitivity, specificity and accuracy metrics and the Dice coefficient. We compared the results with other automatic segmentation methods (neighborhood valley emphasis (NVE), valley emphasis (VE) and Otsu). Results show that our approach is proved to be more efficient than comparable methods and a feasible alternative to analyze the bone vascular network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ross M, Kaye G, Pawlina W: Histology: A Text and Atlas with Cell and Molecular Biology. Online access: Lippincott LWW Health Library: Integrated Basic Sciences Collection. Lippincott Williams & Wilkins, 2003

  2. Baik J, Ye Q, Zhang L, Poh C, Rosin M, Macaulay C, Guillaud M: Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms. Cell Oncol 37:193–202, 2014.

    Article  Google Scholar 

  3. Rabelo GD, Beletti ME, Dechichi P: Histological analysis of the alterations on cortical bone channels network after radiotherapy: A rabbit study. Micorscop Res Tech, 73:1015–1018,2010

    Article  Google Scholar 

  4. Cui Y, Zhang G, Liu Z, Xiong Z, Hu J: A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images. CoRR, 2018 https://arxiv.org/abs/1803.02786

  5. Xing F, Xie Y, Su H, Liu F, Yang L: Deep learning in microscopy image analysis: A survey. IEEE Trans Neural Netw Learn Sys 29(10):1–19,2017

    Google Scholar 

  6. Rabelo GD, Travençolo BAN, Oliveira MA, Beletti ME, Gallottini M, de Silveira FRX: Changes in cortical bone channels network and osteocyte organization after the use of zoledronic acid. Arch Endocrin Metabol 59(6):507–514,2015

  7. da Fontoura Costa L, Viana MP, Beletti ME: Complex channel networks of bone structure. Appl Phys Lett 88(3):033903,2006

  8. Irshad H, Veillard A, Roux L, Racoceanu D: Methods for nuclei detection, segmentation and classification in digital histopathology: A review current status and future potential. IEEE Rev Biomed Eng 7:97–114,2014.

    Article  Google Scholar 

  9. Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, JPW: Pluim1 Automatic nuclei segmentation in h&e stained breast cancer histopathology images. PLOS ONE, 8(7),2013.

  10. Loy G, Zelinsky A: Fast radial symmetry for detecting points of interest. IEEE Trans Patt Anal Mach Intell, 25(8), 2003

  11. Hage IS, Hamade RF: Segmentation of histology slides of cortical bone using pulse coupledneural networks optimized by particle-swarm optimization. Comp Med Imag Graph 37(7-8):466–474,2013

    Article  Google Scholar 

  12. Tosta TAA, de Abreu AF, Travençolo BAN, de Nascimento MZ, Neves LA: Unsupervised segmentation of leukocytes images using thresholding neighborhood valley-emphasis. In 2015 IEEE 28th Int Symp Comp-Based Med Sys, pages 93–94,2015

  13. do Nascimento MZ, Martins AS, Tosta TAA, Neves LA: Lymphoma images analysis using morphological and non-morphological descriptors for classification. Comp Meth Prog Biomed 163:65-77,2018

  14. Doğan GE, Halici Z, Karakus E, Erdemci B, Alsaran A, Cinar I: Dose-dependent effect of radiation on resorbable blast material titanium implants: an experimental study in rabbits. Acta Odontologica Scandinavica 76(2):130–134,2017

    Article  Google Scholar 

  15. Li JY, Pow EHN, Zheng LW, Ma L, Kwong DLW, Cheung LK: Dose-dependent effect of radiation on titanium implants: a quantitative study in rabbits. Clin Oral Impl Res 25(2):260–265,2013

    Article  Google Scholar 

  16. Vincent L: Morphological grayscale reconstruction: Definition, efficient algorithm and applications in image analysis. IEEE Conf Comp Vis Patt Recogn, pages 633–635,1992

  17. Gonzalez RC, Woods RC: Processamento Digital de Imagens. Pearson, 3 edition, 2010

  18. Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Sys, Man, and Cybernetics, SMC-9(1):62–66,1979

  19. Chen TW, Chen YL, Chien SY: Fast image segmentation based on k-means clustering with histograms in hsv color space. IEEE 10th Workshop on Multimedia Signal Processing, pages 322–325,2008

  20. Dhanachandra N, Manglem K, Chanu YJ: Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Int Multi-Con Info Proc 54:764–771,2015

    Google Scholar 

  21. Duda RO, Hart PE, Stork DG: Pattern Classification. Wiley, 2 edition, 2012.

  22. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans Patt Anal Mach Intell 24(7):881–892,2002

    Article  Google Scholar 

  23. Likasa A, Vlassisb N, Verbeekb J: The global k-means clustering algorithm. J Patt Recogn Soc, pages 451–461,2003.

  24. Wang CW, Ka SM, Chen A: Robust image registration of biological microscopic images. Nature - Sci Rep, 2014

  25. Ng HF: Automatic thresholding for defect detection. Patt Recogn Lett- Elsevier, 27:1644–1649,2006

    Article  Google Scholar 

  26. Fan JL, Lei B: A modified valley-emphasis method for automatic thresholding. Patt Recog Lett, 33(6):703–708,2012

    Article  Google Scholar 

Download references

Acknowledgements

André R. Backes gratefully acknowledges the financial support of CNPq (Grant #301715/2018-1). The authors also thank FAPEMIG (Foundation to the Support of Research in Minas Gerais) and the School of Medicine of the Federal University of Triângulo Mineiro (UFTM) for providing support in the ionizing radiation procedures. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ricardo Backes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondim, P.H.C.C., Limirio, P.H.J.O., Rocha, F.S. et al. Automatic Segmentation of Bone Canals in Histological Images. J Digit Imaging 34, 678–690 (2021). https://doi.org/10.1007/s10278-021-00454-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-021-00454-1

Keywords

Navigation