Skip to main content
Log in

Towards high-level fuzzy control specifications for building automation systems

  • Theme Section Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

The control logic underlying building automation systems has consisted, traditionally, of embedded discrete programs created using either low-level or proprietary scripting languages, or using general purpose fourth-generation visual languages like Simulink. It is also well known that programs developed in this way are hard to evolve, test, and maintain. These difficulties are intensified when continuous control problems have to be tackled or when the actuation must vary continually subject to the sensor inputs. Such is the case in day-lighting or occupancy-based control applications. In this paper, we propose a declarative high-level Domain-Specific Language that aims to reduce the effort required to specify the control logic of building automation systems. Our language combines fuzzy logic and temporal logic, enabling to define the behaviour in terms of domain abstractions. Finally, the approach has been validated in two ways: (i) in a case study that simulates the control system of an automated office room and (ii) by means of an empirical study to confirm usability (with a System Usability Scale questionnaire) and effectiveness, here regarded from the perspective of correctness, of the proposed language with respect to a well-known language like Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. In a sense, this follows the classical modus ponens where the conclusion is obtained from the expression \(A\wedge (A\rightarrow B)\).

  2. https://gitlab.citius.usc.es/juan.vidal/fuzzy-temporal-dsl.

  3. https://www.eclipse.org/atl/.

  4. https://www.eclipse.org/modeling/m2t/?project=xpand.

  5. https://cordis.europa.eu/project/rcn/191915/factsheet/en.

  6. http://mathworks.com.

  7. More models, including complete controllers are available in the experiments memory at https://gitlab.citius.usc.es/juan.vidal/fuzzy-temporal-dsl.

References

  1. Álvarez, J., Redondo, J., Camponogara, E., Normey-Rico, J., Berenguel, M., Ortigosa, P.: Optimizing building comfort temperature regulation via model predictive control. Energy Build. 57, 361–372 (2013)

    Google Scholar 

  2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)

    Google Scholar 

  3. Basili, V., Caldiera, G., Rombach, H.: Goal question metric paradigm. Encycl. Softw. Eng. 1, 528–532 (2001)

    Google Scholar 

  4. Boithias, F., El Mankibi, M., Michel, P.: Genetic algorithms based optimization of artificial neural network architecture for buildings indoor discomfort and energy consumption prediction. Build. Simul. 5(2), 95–106 (2012)

    Google Scholar 

  5. Brooke, J.: Sus-a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClelland, I.L. (eds.) Usability Evaluation in Industry, Chap. 21, pp. 189–194. Taylor & Francis, London (1996)

    Google Scholar 

  6. Calvino, F., Gennusa, M.L., Rizzo, G., Scaccianoce, G.: The control of indoor thermal comfort conditions: introducing a fuzzy adaptive controller. Energy Build. 36(2), 97–102 (2004)

    Google Scholar 

  7. CEN: En 15232-2006, calculation methods for energy efficiency improvements by the application of integrated building automation systems. Technical Report, European Committee for Standardization, Brussels, Belgium (2006)

  8. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2), 97–166 (2001)

    Google Scholar 

  9. Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: HUC’99: Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, pp. 304–307. Springer (1999)

  10. Dixon, R.K., McGowan, E., Onysko, G., Scheer, R.M.: US energy conservation and efficiency policies: challenges and opportunities. Energy Policy 38(11), 6398–6408 (2010)

    Google Scholar 

  11. Doctor, F., Hagras, H., Callaghan, V.: A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 35(1), 55–65 (2005)

    Google Scholar 

  12. Domingues, P., Carreira, P., Vieira, R., Kastner, W.: Building automation: concepts and technology review. Comput. Stand. Interfaces J. 45, 1–12 (2016)

    Google Scholar 

  13. Dounis, A., Manolakis, D.: Design of a fuzzy system for living space thermal-comfort regulation. Appl. Energy 69(2), 119–144 (2001)

    Google Scholar 

  14. Dounis, A., Santamouris, M., Lefas, C., Argiriou, A.: Design of a fuzzy set environment comfort system. Energy Build. 22(1), 81–87 (1995)

    Google Scholar 

  15. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, New York (1993)

    MATH  Google Scholar 

  16. DuBois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Trans. Syst. Man Cybern. 19(4), 729–744 (1989)

    MathSciNet  Google Scholar 

  17. Dutta, S.: An event based fuzzy temporal logic. In: [1988] Proceedings. The Eighteenth International Symposium on Multiple-Valued Logic, pp. 64–71 (1988)

  18. Ferreira, P., Ruano, A., Silva, S., Conceio, E.: Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build 55, 238–251 (2012)

    Google Scholar 

  19. Frigeri, A., Pasquale, L., Spoletini, P.: Fuzzy time in linear temporal logic. ACM Trans. Comput. Logic 15(4), 30:1–30:22 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Fukamios, S., Mizumoto, M., Tanaka, K.: Some considerations on fuzzy conditional inference. Fuzzy Sets Syst. 4(3), 243–273 (1980)

    MathSciNet  MATH  Google Scholar 

  21. Gomes, R., Pombeiro, H., Silva, C., Carreira, P., Carvalho, M., Almeida, G., Domingues, P., Ferrão, P.: Towards a Smart Campus: Building-User Learning Interaction for Energy Efficiency, the Lisbon Case Study. World Sustainability Series Book Series, pp. 381–398. Springer, Berlin (2017)

    Google Scholar 

  22. Guillemin, A., Molteni, S.: An energy-efficient controller for shading devices self-adapting to the user wishes. Build. Environ. 37(11), 1091–1097 (2002)

    Google Scholar 

  23. Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Creating an ambient-intelligence environment using embedded agents. Intell. Syst. IEEE 19(6), 12–20 (2004)

    Google Scholar 

  24. Jang, J., Sun, C., Mizutani, E.: Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence. IEEE Trans. Autom. Control 42(10), 1482–1484 (1997)

    Google Scholar 

  25. Jia, R., Jin, B., Jin, M., Zhou, Y., Konstantakopoulos, I.C., Zou, H., Kim, J., Li, D., Gu, W., Arghandeh, R., Nuzzo, P., Schiavon, S., Sangiovanni-Vincentelli, A.L., Spanos, C.J.: Design automation for smart building systems. Proc. IEEE 106(9), 1680–1699 (2018). https://doi.org/10.1109/JPROC.2018.2856932

    Article  Google Scholar 

  26. Johnson-Laird, P.N.: Mental models and human reasoning. Proc. Natl. Acad. Sci. U. S. A. 107(43), 18243–18250 (2010)

    Google Scholar 

  27. Kolokotsa, D., Stavrakakis, G., Kalaitzakis, K., Agoris, D.: Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks. Eng. Appl. Artif. Intell. 15(5), 417–428 (2002)

    Google Scholar 

  28. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A., Botterweck, G.: Taming EMF and GMF using model transformation. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) Model Driven Engineering Languages and Systems SE-15, Lecture Notes in Computer Science, vol. 6394, pp. 211–225. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-16145-2_15

    Chapter  Google Scholar 

  29. Lamine, K.B., Kabanza, F.: Using fuzzy temporal logic for monitoring behavior-based mobile robots. In: The IASTED International Conference on Robotics and Applications (RA 2006), pp. 116–121. ACTA Press (2006)

  30. Mantyjarvi, J., Seppanen, T.: Adapting applications in handheld devices using fuzzy context information. Interact. Comput. 15(4), 521–538 (2003)

    MATH  Google Scholar 

  31. Meyer, S., Rakotonirainy, A.: A survey of research on context-aware homes. In: Proceedings of the Australasian Information Security Workshop Conference on ACSW Frontiers 2003-Volume 21, pp. 159–168. Australian Computer Society, Inc. (2003)

  32. Michels, K., Klawonn, F., Kruse, R., Nrnberger, A.: Fuzzy Control—Fundamentals, Stability and Design of Fuzzy Controllers, Studies in Fuzziness and Soft Computing, vol. 200. Springer, Berlin (2006)

    Google Scholar 

  33. Milan, C., Bojesen, C., Nielsen, M.P.: A cost optimization model for 100 renewable residential energy supply systems. Energy 48(1), 118–127 (2012)

    Google Scholar 

  34. Molina, D., Lu, C., Sherman, V., Harley, R.: Model predictive and genetic algorithm based optimization of residential temperature control in the presence of time-varying electricity prices. In: Industry Applications Society Annual Meeting (IAS), 2011 IEEE. pp. 1–7 (2011)

  35. Moon, S.I., Lee, K., Lee, D.: Fuzzy branching temporal logic. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(2), 1045–1055 (2004)

    Google Scholar 

  36. Nguyen, T.A., Aiello, M.: Energy intelligent buildings based on user activity: a survey. Energy Build. 56, 244–257 (2013)

    Google Scholar 

  37. Park, H., Yoo, J., Cho, S.: A context-aware music recommendation system using fuzzy bayesian networks with utility theory. Fuzzy Syst. Knowl. Discov. pp. 970–979 (2006)

  38. Prähofer, H., Hurnaus, D., Schatz, R., Wirth, C., Mossenbock, H.: Monaco: a dsl approach for programming automation systems. In: Software Engineering 2008, Lecture Notes in Informatics, pp. 242–256 (2008). https://dblp.uni-trier.de/rec/bibtex/conf/se/PrahoferHSWM08

  39. Preuer, S.: A domain-specific language for industrial automation. In: Software Engineering 2007 - Beiträge zu den Workshops, Fachtagung des GI-Fachbereichs Softwaretechnik, 27.-30.3.2007 in Hamburg, pp. 349–352 (2007)

  40. Rovsing, P.E., Larsen, P., Toftegaard, T.S., Lux, D.: A reality check on home automation technologies. J. Green Eng. 1, 303–327 (2011)

    Google Scholar 

  41. Safdar, A., Kim, D.: Energy conservation and comfort management in building environment. Int. J. Innov. Comput. 9(6), 2229–2244 (2013)

    Google Scholar 

  42. Schmidt, A., Van Laerhoven, K.: How to build smart appliances? IEEE [see also IEEE Wirel. Commun.] Personal Commun. 8(4), 66–71 (2001)

    Google Scholar 

  43. Shaikh, P.H., Nor, N.B.M., Nallagownden, P., Elamvazuthi, I., Ibrahim, T.: A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 34, 409–429 (2014)

    Google Scholar 

  44. Soucek, S., Zucker, G.: Current developments and challenges in building automation. e & i Elektrotechnik und Informationstechnik 129(4), 278–285 (2012). https://doi.org/10.1007/s00502-012-0013-4

    Article  Google Scholar 

  45. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework. Pearson Education, London (2008)

    Google Scholar 

  46. Strejček, J.: Linear temporal logic: expressiveness and model checking (2005)

  47. Thiele, H., Kalenka, S.: On fuzzy temporal logic. In: [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1027–1032 (1993)

  48. Torunski, E., Othman, R., Orozco, M., Saddik, A.E.: A review of smart environments for energy savings. Procedia Comput. Sci. 10, 205–214 (2012)

    Google Scholar 

  49. Üçtuğ, F.G., Yükseltan, E.: A linear programming approach to household energy conservation: efficient allocation of budget. Energy Build. 49, 200–208 (2012)

    Google Scholar 

  50. Waide, P., Gerundino, D.: International Standards to Develop and Promote Energy Efficiency and Renewable Energy Sources. International Energy Agency. International Organization for Standardization (IEISO), Paris (2007)

    Google Scholar 

  51. Wang, Z., Wang, L.: Intelligent control of ventilation system for energy-efficient buildings with co2 predictive model. IEEE Trans. Smart Grid 4(2), 686–693 (2013)

    Google Scholar 

  52. Wang, Z., Yang, R., Wang, L.: Multi-agent intelligent controller design for smart and sustainable buildings. In: 2010 4th Annual IEEE Systems Conference, pp. 277–282 (2010)

  53. Welch, B.L.: The generalization of ‘student’s’ problem when several different population variances are involved. Biometrika 34(1–2), 28–35 (1947). https://doi.org/10.2307/2332510

    Article  MathSciNet  MATH  Google Scholar 

  54. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29044-2

    Book  MATH  Google Scholar 

  55. Yang, R., Wang, L.: Multi-objective optimization for decision-making of energy and comfort management in building automation and control. Sustain. Cities Soc. 2(1), 1–7 (2012)

    Google Scholar 

  56. Zadeh, L.A.: Fuzzy logic=computing with words. Trans. Fuzzy Sys. 4(2), 103–111 (1996)

    Google Scholar 

  57. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC–3(1), 28–44 (1973)

    MathSciNet  MATH  Google Scholar 

  58. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-i* 1. Inf. Sci. 8(3), 199–249 (1975)

    MathSciNet  MATH  Google Scholar 

  59. Zadeh, L.A.: A theory of approximate reasoning. Mach. Intell. 9, 149–194 (1979)

    MathSciNet  Google Scholar 

  60. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)

    Google Scholar 

Download references

Acknowledgements

INESC-ID authors were supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) under contract UID/CEC/50021/2019. The authors would like to thank the COST Action IC1404 Multi-Paradigm Modeling for Cyber-Physical Systems (MPM4CPS) for the context and partial support to this work, as well as NOVA LINCS Research Laboratory (Grant: FCT/MCTES PEst UID/ CEC/04516/2013) and DSML4MAS Project (Grant: FCT/MCTES TUBITAK/0008/2014) “Modelação de Sistemas Sócio Ciberfísicos” FCT/DAAD - 2018/2019 (Poc. DAAD 441.00). IDMEC author was supported by FCT project UID/EMS/50022/2019. The CiTIUS author was also supported by the Spanish Ministry of Economy and Competitiveness under the project TIN2015-73566-JIN and by the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016–2019, ED431G/08 and reference competitive group 2019–2021, ED431C 2018/29) and the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Amaral.

Additional information

Communicated by John Fitzgerald, Peter Larsen, and Fuyuki Ishikawa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, J.C., Carreira, P., Amaral, V. et al. Towards high-level fuzzy control specifications for building automation systems. Softw Syst Model 19, 625–646 (2020). https://doi.org/10.1007/s10270-019-00755-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-019-00755-8

Keywords

Navigation