Skip to main content
Log in

Congrès l’association américaine de recherche contre le cancer — AACR 2017

American Association for Cancer Research — AACR congress, 2017

  • Compte Rendu / Report
  • Published:
Oncologie

Résumé

Plus de 21 900 participants issus de plus de 80 pays ont participé cette année à la réunion annuelle de l’AACR qui s’est tenue à Washington DC. Environ 6 400 travaux y ont été présentés, travaux qui abordaient de nombreuses découvertes faites dans les différents domaines de la recherche sur le cancer: prévention, biologie du cancer, études translationnelles et cliniques. De nombreuses études incluant des sciences non biologiques telles que la physique, la chimie, les mathématiques ou la bio-informatique ont également été dévoilées, accroissant la diversité et l’originalité des données présentées. Plus spécifiquement, les découvertes récentes faites dans le domaine de l’immunologie tumorale et de l’immunothérapie ont de nouveau été largement abordées et discutées. À ce sujet, notre compréhension de la réponse immunitaire contre les tissus tumoraux et des mécanismes d’échappement immunitaire mis en jeu s’est fortement accrue ces dernières années. Celle-ci a contribué au développement de nouvelles immunothérapies et à l’identification de nouvelles stratégies permettant d’optimiser l’utilisation de celles déjà existantes. Dans ce numéro spécial d’Oncologie, les jeunes médecins de l’association française AERIO (Association d’enseignement et de recherche des internes d’oncologie), supervisés par des médecinschercheurs, présentent les sujets les plus pertinents présentés lors de la réunion de l’AACR 2017. Cette action fait partie intégrante d’un projet qui permet chaque année à cinq jeunes médecins de participer à cette conférence de premier plan et d’en diffuser, grâce à la rédaction d’articles, les informations clés qui en sont issues auprès des professionnels ayant été dans l’incapacité d’y assister.

Abstract

The Annual American Association for Cancer Research (AACR) meeting for this year was took place at Washington, DC and over 21,900 participants from more than 80 countries attended it. About 6,400 proffered abstracts were presented reporting many advances done across different areas of cancer research: prevention, cancer biology, and clinical and translational studies. Non-biological sciences including physics, chemistry, mathematics, computational biology, and bioinformatics participated to the increased diversity and originality of the presented works. Major discoveries done in the field of tumor immunology and immunotherapy were once again a main focus of the meeting with their broad discussions. In particular, our better understanding of the immune response towards cancer and the mechanisms of immune escape has rapidly grown in the past. This contributed to the development of new immunotherapies and led to the identification of new strategies to better use those that already exist. In this special issue of Oncology, mentoring medical doctors of the French association AERIO (Association d’enseignement et de recherche des internes d’oncologie) describe the most relevant topics presented at the meeting. This mentoring is part of an exciting project wherein five young medical doctors are permitted to participate each year at the annual AACR meeting to report, through the redaction and publication of articles, key information to people who could not attend to the conference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Porporato PE, Dhup S, Dadhich RK, et al (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2, Doi:10.3389/fphar.2011.00049

  2. Renner K, Singer K, Koehl GE, et al (2017) Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 8, Doi:10.3389/fimmu.2017.00248

  3. Hall A, Meyle KD, Lange MK, et al (2013) Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 4:584–99, Doi:10.18632/oncotarget.965

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mehta RS, Nishihara R, Cao Y, et al (2017) Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol, Doi: 10.1001/jamaoncol.2016.6374

    Google Scholar 

  5. Galon J, Pagès F, Marincola FM, et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205

    Article  PubMed  PubMed Central  Google Scholar 

  6. Obeid M, Tesniere A, Ghiringhelli F, et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med 13:54–61, Doi: 10.1038/nm1523

    Article  CAS  PubMed  Google Scholar 

  7. Pietrocola F, Pol J, Vacchelli E, et al (2016) Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30:147–60, Doi:10.1016/j.ccell.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  8. Galluzzi L, Buqué A, Kepp O, et al (2016) Immunogenic cell death in cancer and infectious disease. Nature Rev Immunol 17:97–111, Doi:10.1038/nri.2016.107

    Article  Google Scholar 

  9. Eisenberg T, Abdellatif M, Schroeder S, et al (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22:1428–38, Doi:10.1038/nm.4222

    Article  CAS  PubMed  Google Scholar 

  10. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–37, Doi:10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adams JL, Smothers J, Srinivasan R, Hoos A (2015) Big opportunities for small molecules in immuno-oncology. Nature Rev Drug Discov 14:603–22, Doi:10.1038/nrd4596

    Article  CAS  Google Scholar 

  12. Daigo K, Inforzato A, Barajon I, et al (2016) Pentraxins in the activation and regulation of innate immunity. Immunol Rev 274:202–17, Doi:10.1111/imr.12476

    Article  CAS  PubMed  Google Scholar 

  13. Bonavita E, Mantovani A, Garlanda C (2015) PTX3 acts as an extrinsic oncosuppressor. Oncotarget 6:32309–10, Doi:10.18632/oncotarget.4845

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nature Rev Cancer 14:598–610, Doi:10.1038/nrc3792

    Article  CAS  Google Scholar 

  15. Jiang H, Hegde S, Knolhoff BL, et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–60, Doi:10.1038/nm.4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaneda MM, Messer KS, Ralainirina N, et al (2016) PI3K? is a molecular switch that controls immune suppression. Nature 539:437–42, Doi:10.1038/nature19834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Henau O, Rausch M, Winkler D, et al (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3K? in myeloid cells. Nature 539:443–7, Doi:10.1038/nature20554

    Article  PubMed  Google Scholar 

  18. Cassier PA, Italiano A, Gomez-Roca CA, et al (2015) CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a doseescalation and dose-expansion phase I study. Lancet Oncol 16:949–56, Doi:10.1016/S1470-2045(15)00132-1

    Article  CAS  PubMed  Google Scholar 

  19. Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014:292376, Doi:10.1155/2014/292376

    Article  PubMed  PubMed Central  Google Scholar 

  20. Halama N, Zoernig I, Berthel A, et al (2016) Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29:587–601, Doi:10.1016/j.ccell.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Liu L, Gong C, et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS One 7:e50946, Doi:10.1371/journal.pone.0050946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51, Doi:10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hortobagyi GN, Stemmer SM, Burris HA, et al (2016) Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med 375:1738–48, Doi:10.1056/NEJMoa1609709

    Article  CAS  PubMed  Google Scholar 

  24. Bardia A, Mayer IA, Diamond JR, et al (2017) Efficacy and safety of anti-Trop2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol Doi:10.1200/JCO.2016.70.8297

  25. Lieberman S, Tomer A, Ben-Chetrit A, et al (2016) Population screening for BRCA1/BRCA2 founder mutations in Ashkenazi Jews: proactive recruitment compared with self-referral. Genet Med, Doi:10.1038/gim.2016.182

    Google Scholar 

  26. Hirsh-Yechezkel G, Chetrit A, Lubin F, et al (2003) Population attributes affecting the prevalence of BRCA mutation carriers in epithelial ovarian cancer cases in Israel. Gynecol Oncol 89:494–8

    Article  CAS  PubMed  Google Scholar 

  27. Domchek SM, Friebel TM, Singer CF, et al (2010) Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 304:967–75, Doi: 10.1001/jama.2010.1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manchanda R, Legood R, Burnell M, et al (2015) Costeffectiveness of population screening for BRCA mutations in Ashkenazi Jewish women compared with family history-based testing. JNCI 107, Doi: 10.1093/jnci/dju380

  29. Chan AT, Giovannucci EL, Meyerhardt JA, et al (2005) Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 294:914–23, Doi: 10.1001/jama.294.8.914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rothwell PM, Wilson M, Elwin CE, et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–50, Doi: 10.1016/S0140-6736(10)61543-7

    Article  CAS  PubMed  Google Scholar 

  31. Giardiello FM, Hamilton SR, Krush AJ, et al (1993) Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328:1313–6, Doi: 10.1056/NEJM199305063281805

    Article  CAS  PubMed  Google Scholar 

  32. Giardiello FM, Yang VW, Hylind LM, et al (2002) Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 346:1054–9, Doi: 10.1056/NEJMoa012015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan AT, Arber N, Burn J, et al (2012) Aspirin in the chemoprevention of colorectal neoplasia: an overview. Cancer Prev Res (Philadelphia, PA) 5:164–78, Doi: 10.1158/1940-6207.CAPR-11-0391

    Article  CAS  Google Scholar 

  34. Steinbach G, Lynch PM, Phillips RKS, et al (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–52, Doi: 10.1056/NEJM200006293422603

    Article  CAS  PubMed  Google Scholar 

  35. Samadder NJ, Neklason DW, Boucher KM, et al (2016) Effect of sulindac and erlotinib vs. placebo on duodenal neoplasia in familial adenomatous polyposis: a randomized clinical trial. JAMA 315:1266–75, Doi: 10.1001/jama.2016.2522

    CAS  Google Scholar 

  36. Burn J, Bishop DT, Mecklin JP, et al (2008) Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med 359:2567–78, Doi: 10.1056/NEJMoa0801297

    Article  CAS  PubMed  Google Scholar 

  37. Burn J, Gerdes AM, Macrae F, et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378:2081–7, Doi: 10.1016/S0140-6736(11)61049-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen S, Parmigiani G (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25:1329–33, Doi: 10.1200/JCO.2006.09.1066

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rebbeck TR, Mitra N, Wan F, et al (2015) Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313:1347–61, Doi: 10.1001/jama.2014.5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rebbeck TR, Kauff ND, Domchek SM (2009) Meta-analysis of risk reduction estimates associated with risk-reducing salpingooophorectomy in BRCA1 or BRCA2 mutation carriers. JNCI 101:80–7, Doi: 10.1093/jnci/djn442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parsons DW, Roy A, Yang Y, et al (2016 Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol 2:616–24, Doi: 10.1001/jamaoncol.2015.5699

    Article  Google Scholar 

  42. Easton DF, Pharoah PDP, Antoniou AC, et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372:2243–57, Doi: 10.1056/NEJMsr1501341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tung N, Domchek SM, Stadler Z, et al (2016) Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 13:581–8, Doi: 10.1038/nrclinonc.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schrader KA, Cheng DT, Joseph V, et al (2016) Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol 2:104–11, Doi: 10.1001/jamaoncol.2015.5208

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mucci LA, Hjelmborg JB, Harris JR, et al (2016) Familial risk and heritability of cancer among twins in Nordic countries. JAMA 315:68–76, Doi: 10.1001/jama.2015.17703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amos CI, Dennis J, Wang Z, et al (2017) The OncoArray consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomarkers Prev 26:126–35, Doi: 10.1158/1055-9965.EPI-16-0106

    Article  PubMed  Google Scholar 

  47. Pharoah PDP, Antoniou A, Bobrow M, et al (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31:33–6, Doi: 10.1038/ng853

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Sun J, Zheng SL (2013) Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 15:314–22, Doi: 10.1038/aja.2013.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pritchard CC, Mateo J, Walsh MF, et al (2016) Inherited DNArepair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–53, Doi: 10.1056/NEJMoa1603144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Conran CA, Na R, Chen H, et al (2016) Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer. Asian J Androl 18:520–4, Doi: 10.4103/1008-682X.179527

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al Olama AA, Kote-Jarai Z, Berndt SI, et al (2014) A metaanalysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46:1103–9, Doi: 10.1038/ng.3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen H, Liu X, Brendler CB, et al (2016) Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: results from the prostate cancer prevention trial. The Prostate 76:1120–9, Doi: 10.1002/pros.23200

    Article  PubMed  PubMed Central  Google Scholar 

  53. Feng BJ (2017) PERCH: a unified framework for disease gene prioritization. Hum Mutat 38:243–51, Doi: 10.1002/humu.23158

    Article  CAS  PubMed  Google Scholar 

  54. Rausch T, Jones DTW, Zapatka M, et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71, Doi: 10.1016/j.cell.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hettmer S, Archer NM, Somers GR, et al (2014) Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer 120:1068–75, Doi: 10.1002/cncr.28507

    Article  CAS  PubMed  Google Scholar 

  56. Fischer NW, Prodeus A, Malkin D, Gariépy J (2016) p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle (Georgetown, Tex.) 15:3210–9, Doi: 10.1080/15384101.2016.1241917

    Article  CAS  Google Scholar 

  57. Zhu J, Sammons MA, Donahue G, et al (2015) Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525:206–11, Doi: 10.1038/nature15251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Samuel N, Wilson G, Lemire M, et al (2016) Genome-wide DNA methylation analysis reveals epigenetic dysregulation of microRNA-34A in TP53-associated cancer susceptibility. J Clin Oncol 34:3697–704, Doi: 10.1200/JCO.2016.67.6940

    Article  CAS  Google Scholar 

  59. Savage SA, Alter BP (2009) Dyskeratosis congenita. Hematol Oncol Clin North Am 23:215–31, Doi: 10.1016/j.hoc.2009.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  60. Baird DM (2010) Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med 12:e16, Doi: 10.1017/S146239941000147X

    Article  PubMed  Google Scholar 

  61. Zhang J, Walsh MF, Wu G, et al (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373:2336–46, Doi: 10.1056/NEJMoa1508054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slavin TP, Blazer KR, Weitzel JN (2016) When clinical care depends on the answer: the challenges of assessing germline cancer gene variants. J Clin Oncol 34:4061–3, Doi: 10.1200/JCO.2016.69.7151

    Article  PubMed  Google Scholar 

  63. Vijai J, Topka S, Villano D, et al (2016) A recurrent ERCC3 truncating mutation confers moderate risk for breast cancer. Cancer Discov, Doi: 10.1158/2159-8290.CD-16-0487

    Google Scholar 

  64. Charoentong P, Finotello F, Angelova M, et al (2017) Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade. Cell Reports 18:248–62, Doi: 10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  65. Gulshan V, Peng L, Coram M, et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–10, Doi: 10.1001/jama.2016.17216

    Article  PubMed  Google Scholar 

  66. Liu Y, Gadepalli K, Norouzi M, et al (2017) Detecting cancer metastases on gigapixel pathology images. Computer Vision and Pattern Recognition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Simmet, J. Gantzer, S. Assoun, L. Verlingue, A. Gobert, D. Grazziotin-Soares or J. -P. Lotz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmet, V., Gantzer, J., Assoun, S. et al. Congrès l’association américaine de recherche contre le cancer — AACR 2017. Oncologie 19, 209–230 (2017). https://doi.org/10.1007/s10269-017-2720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-017-2720-2

Mots clés

Keywords

Navigation