Skip to main content

Advertisement

Log in

The effects of different surface treatments applied to milled PMMA denture base material on repair bond strength

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The high cost of CAD/CAM systems and materials is a severe economic burden. Therefore, repair of CAD/CAM PMMA, selecting appropriate repair materials, and surface modifications are clinically important. This study aims to evaluate the shear bond strength of PMMA repair materials after various surface treatments on CAD/CAM PMMA denture base material. For this purpose, a total of 480 CAD/CAM PMMA denture base test specimens were manufactured. Then all test specimens were divided into 6 groups, and different surface treatments were applied. Group A: sandblasting, Group B: 4% hydro fluoric acid, Group C: tungsten carbide bur, Group D: dichloromethane + methyl methacrylate mixture, Group E: dichloromethane and methyl methacrylate, Group F: no surface treatment. Each group is then divided into 4 different subcategories; repair processes were performed using; heat-cured acrylic resin (n:20), auto-polymerized acrylic resin (n:20), gingiva composite (n:20), and CAD/CAM PMMA tooth material (n:20). After repairs, thermal aging was applied to half of the test specimens in each subcategory. The shear bond strength value was measured with a universal test device. Sandblasting group showed the highest surface roughness value in all test specimens (p < 0.001). Heat-cured acrylic resin with sandblasting exhibited the highest bond strength, while the untreated gingiva composite resin exhibited the lowest value. Thermal aging decreased bond strength in all repair materials (p < 0.001). Among the surface treatment groups, sandblasting with Al2O3 particles exhibited the highest surface roughness value and repair bond strength. The application of organic solvents to the surface increased the surface roughness and repair bond strength. Applying dichloromethane and methyl methacrylate monomer separately is more effective than applying it as a mixture. The ideal bonding among repair materials was obtained with heat-cured acrylic resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data on the repair bond strength of milled PMMA denture base supporting the findings of this study are included in this paper and Supplementary Information files.

References

  1. Yilmaz B, Azak AN, Alp G, Ekşi H. Use of CAD-CAM technology for the fabrication of complete dentures: an alternative technique. J Prosthet Dent. 2017;118(2):140–3.

    Article  PubMed  Google Scholar 

  2. Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: an in vitro evaluation of trueness. J Prosthet Dent. 2019;121(4):637–43.

    Article  PubMed  Google Scholar 

  3. de Mendonça AF, Furtado de Mendonça M, White GS, Sara G, Littlefair D (2016) Total CAD/CAM supported method for manufacturing removable complete dentures. Case reports in dentistry 2016.

  4. Janeva NM, Kovacevska G, Elencevski S, Panchevska S, Mijoska A, Lazarevska B. Advantages of CAD/CAM versus conventional complete dentures-a review. Open Access Maced J Med Sci. 2018;6(8):1498.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Unkovskiy A, Wahl E, Zander AT, Huettig F, Spintzyk S. Intraoral scanning to fabricate complete dentures with functional borders: a proof-of-concept case report. BMC Oral Health. 2019;19(1):1–7.

    Article  Google Scholar 

  6. Li Y, Han W, Cao J, Iv Y, Zhang Y, Han Y, Liu H (2018) Design of complete dentures by adopting CAD developed for fixed prostheses. J Prosthod 27(2): 212–219.

  7. Srinivasan M, Kalberer N, Naharro M, Marchand L, Lee H, Müller F. CAD-CAM milled dentures: the Geneva protocols for digital dentures. J Prosthet Dent. 2020;123(1):27–37.

    Article  PubMed  Google Scholar 

  8. Han W, Li Y, Zhang Y, Zhang Y, Hu P, Liu H, Shen Y. Design and fabrication of complete dentures using CAD/CAM technology. Medicine. 2017;96(1):e5435

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schweiger J, Güth JF, Edelhoff D, Stumbaum J. Virtual evaluation for CAD-CAM-fabricated complete dentures. J Prosthet Dent. 2017;117(1):28–33.

    Article  PubMed  Google Scholar 

  10. Infante L, Yilmaz B, McGlumphy E, Finger I. Fabricating complete dentures with CAD/CAM technology. J Prosthet Dent. 2014;111(5):351–5.

    Article  PubMed  Google Scholar 

  11. Perea-Lowery L, Minja IK, Lassila L, Ramakrishnaiah R, Vallittu PK. Assessment of CAD-CAM polymers for digitally fabricated complete dentures. J Prosthet Dent. 2021;125(1):175–81.

    Article  PubMed  Google Scholar 

  12. Barbosa DB, Barão VAR, Monteiro DR, Compagnoni MA, Marra J. Bond strength of denture teeth to acrylic resin: effect of thermocycling and polymerisation methods. Gerodontology. 2008;25(4):237–44.

    Article  PubMed  Google Scholar 

  13. Ayman AD. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron Physician. 2017;9(7):4766.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Steinmassl PA, Wiedemair V, Huck C, Klaunzer F, Steinmassl O, Grunert I, Dumfahrt H. Do CAD/CAM dentures really release less monomer than conventional dentures? Clin Oral Invest. 2017;21(5):1697–705.

    Article  Google Scholar 

  15. Barbosa DB, Monteiro DR, Barão VAR, Pero AC, Compagnoni MA. Effect of monomer treatment and polymerisation methods on the bond strength of resin teeth to denture base material. Gerodontology. 2009;26(3):225–31.

    Article  PubMed  Google Scholar 

  16. Srinivasan M, Gjengedal H, Cattani-Lorente M, Moussa M, Durual S, Schimmel M, Müller F. CAD/CAM milled complete removable dental prostheses: An in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dental materials journal. 2018;37(4):526–33.

    Article  PubMed  Google Scholar 

  17. Murat S, Alp G, Alatalı C, Uzun M. In Vitro evaluation of adhesion of candida albicans on CAD/CAM PMMA-based polymers. J Prosthodont. 2019;28(2):e873–9.

    Article  PubMed  Google Scholar 

  18. Steinmassl PA, Klaunzer F, Steinmassl O, Dumfahrt H, Grunert I. Evaluation of currently available CAD/CAM denture systems. Int J Prosthodont. 2017;30(2):116–22.

    Article  PubMed  Google Scholar 

  19. Steinmassl O, Dumfahrt H, Grunert I, Steinmassl PA. CAD/CAM produces dentures with improved fit. Clin Oral Invest. 2018;22(8):2829–35.

    Article  Google Scholar 

  20. Dayan C, Guven MC, Gencel B, Bural C. A comparison of the color stability of conventional and CAD/CAM polymethyl methacrylate denture base materials. Acta Stomatol Croat. 2019;53(2):158.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park BW, Kim NJ, Lee J, Lee HH. Technique for fabricating individualized dentures with a gingiva-shade composite resin. J Prosthet Dent. 2016;115(5):547–50.

    Article  PubMed  Google Scholar 

  22. Bedrossian EA, Chung KH. Effect of layering gingiva-shade composite resin on the strength of denture base polymers. J Prosthet Dent. 2019;122(2):153-e1.

    Article  Google Scholar 

  23. Mahadevan V, Krishnan M, Krishnan CS, Azhagarasan NS, Sampathkumar J, Ramasubramanian H. Influence of surface modifications of acrylic resin teeth on shear bond strength with denture base resin-an invitro study. J Clin Diagnos Res JCDR. 2015;9(9):16.

    Google Scholar 

  24. Venkat R, Gopichander N, Vasantakumar M. Comprehensive analysis of repair/reinforcement materials for polymethyl methacrylate denture bases: mechanical and dimensional stability characteristics. J Indian Prosth Soc. 2013;13(4):439–49.

    Article  Google Scholar 

  25. Wiegand A, Stucki L, Hoffmann R, Attin T, Stawarczyk B. Repairability of CAD/CAM high-density PMMA-and composite-based polymers. Clin Oral Invest. 2015;19(8):2007–13.

    Article  Google Scholar 

  26. Jeong KW, Kim SH. Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations. J Adv Prosthod. 2019;11(2):95–104.

    Article  Google Scholar 

  27. Minami H, Suzuki S, Minesaki Y, Kurashige H, Tanaka T. In vitro evaluation of the influence of repairing condition of denture base resin on the bonding of autopolymerizing resins. J Prosthet Dent. 2004;91(2):164–70.

    Article  PubMed  Google Scholar 

  28. Al-Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ, Özcan M. A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J Prosthodont. 2019;28(4):452–7.

    Article  PubMed  Google Scholar 

  29. Pereira SMB, Castilho AA, Salazar-Marocho SM, Oliveira KMC, Váquez VZC, Bottino MA (2007) Thermocycling effect on microhardness of laboratory composite resins. Braz J Oral Sci: 1372–1375

  30. Özcan M, Alander P, Vallittu PK, Huysmans MC, Kalk W. Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites. J Mater Sci Mater Med. 2005;16(1):21–7.

    Article  PubMed  Google Scholar 

  31. Klaiber D, Spintzyk S, Geis-Gerstorfer J, Klink A, Unkovskiy A, Huettig F. Bonding behavior of conventional PMMA towards industrial CAD/CAM PMMA and artificial resin teeth for complete denture manufacturing in a digital workflow. Materials. 2021;14(14):3822.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akin H, Kirmali O, Tugut F, Coskun ME. Effects of different surface treatments on the bond strength of acrylic denture teeth to polymethylmethacrylate denture base material. Photomed Laser Surg. 2014;32(9):512–6.

    Article  PubMed  Google Scholar 

  33. Sarac YS, Sarac D, Kulunk T, Kulunk S. The effect of chemical surface treatments of different denture base resins on the shear Bond Strength of Denture Teeth to Denture Base Resinsrepair. J Prosthet Dent. 2005;94(3):259–66.

    Article  PubMed  Google Scholar 

  34. Dandiwal N, Kumar S, Jain S, Aggarwal R, Singla N, Reddy NK. Evaluation of shear bond strength of three different acrylic resin and artificial denture teeth with and without monomer application. J Contemp Dent Pract. 2019;20(1):94–100.

    Article  PubMed  Google Scholar 

  35. Shimizu H, Takahashi Y. Review of adhesive techniques used in removable prosthodontic practice. J Oral Sci. 2012;54(3):205–11.

    Article  PubMed  Google Scholar 

  36. Takahashi Y, Chai J, Takahashi T, Habu T. Bond strength of denture teeth to denture base resins. Int J Prosthodont. 2000;13(1):59–65.

    PubMed  Google Scholar 

  37. Meloto CB, Rodrigues-Garcia R, Canales GT, Rizzatti-Barbosa CM. Effect of surface treatments on the bond strength of different resin teeth to complete denture base material. Acta Odontol Latinoam. 2013;26(1):37–42.

    PubMed  Google Scholar 

  38. Rupp NW, Bowen RL, Paffenbarger GC. Bonding cold-curing denture base acrylic resin to acrylic resin teeth. J Am Dent Assoc. 1971;83(3):601–6.

    Article  Google Scholar 

  39. Choi JJE, Uy CE, Plaksina P, Ramani RS, Ganjigatti R, Waddell JN. Bond strength of denture teeth to heat-cured, CAD/CAM and 3D printed denture acrylics. J Prosthodont. 2020;29(5):415–21.

    Article  PubMed  Google Scholar 

  40. Han SY, Moon YH, Lee J. Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement. J Adv Prosthod. 2020;12(5):251.

    Article  Google Scholar 

  41. Chung KH, Chung CY, Chung CY, Chan DCN. Effect of pre-processing surface treatments of acrylic teeth on bonding to the denture base. J Oral Rehab. 2008;35(4):268–75.

    Article  Google Scholar 

  42. Shimizu H, Kawaguchi T, Yoshida K, Tsue F, Takahashi Y. Effect of surface preparation on the failure load of a highly filled composite resin bonded to a denture base resin. J Prosthod Implant Esth Reconstruct Den. 2009;18(8):684–7.

    Google Scholar 

  43. Papazoglou E, Vasilas AI. Shear bond strengths for composite and autopolymerized acrylic resins bonded to acrylic resin denture teeth. J Prosthet Dent. 1999;82(5):573–8.

    Article  Google Scholar 

  44. Stawarczyk B, Basler T, Ender A, Roos M, Özcan M, Hämmerle C. Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements. J Prosthet Dent. 2012;107(2):94–101.

    Article  PubMed  Google Scholar 

  45. Floyd CJ, Dickens SH. Network structure of Bis-GMA-and UDMA-based resin systems. Dent Mater. 2006;22(12):1143–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Unit of Scientific Research Projects Fund of Gazi University, Ankara, Turkey (Grant number: 03/2020-08). Statistician Neslihan Gökmen contributed to the analysis of statistical data in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahıde Erbulak.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbulak, Z., Ergun, G. The effects of different surface treatments applied to milled PMMA denture base material on repair bond strength. Odontology 111, 953–970 (2023). https://doi.org/10.1007/s10266-023-00806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00806-z

Keywords

Navigation