Skip to main content

Advertisement

Log in

Dose–response effect of Montelukast on post-extraction dental socket repair and skeletal phenotype of mice

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Bone metabolism and repair are directly regulated by arachidonic acid metabolites. At present, we analyzed the dose–response effects of a selective cysteinyl leukotriene receptor type-1 antagonist during bone repair after tooth extraction and on non-injured skeleton. Sixty-three 129 Sv/Ev male mice composed the groups: C—Control (saline solution); MTK2—2 mg/Kg of Montelukast (MTK) and MTK4–4 mg/Kg of MTK, daily administered by mouth throughout all experimental periods set at 7, 14, and 21 days post-operative. Dental sockets were analyzed by computed microtomography (microCT), histopathology, and immunohistochemistry. Femurs, L5 vertebra and organs were also removed for observation. Blood was collected for plasma bone and liver markers. Histopathology and microCT analysis revealed early socket repair of MTK2 and MTK4 animals, with significant increased BV/TV at days 14 and 21 compared to C. Higher plasma calcium was detected at days 7 and 21 in MTK4 in comparison to C, while phosphate was significantly increased in MTK2 in the same periods in comparison to C and MTK4. No significant differences were found regarding plasma ALP and TRAP, neither for local TRAP and Runx2 immunolabeling at the healing sockets. Organs did not present histological abnormalities. Increased AST levels have been detected in distinct groups and periods. In general, femur phenotype was improved in MTK treated animals. Collectively, MTK promoted early bone formation after tooth extraction and increased bone quality of femurs and vertebra in a time-dose-dependent manner, and should be considered as an alternative therapy when improved post-extraction socket repair or skeleton preservation is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta. 2015;1851:356–65.

    Article  PubMed  Google Scholar 

  2. Bennett M, Gilroy DW. Lipid mediators in inflammation. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.MCHD-0035-2016.

    Article  PubMed  Google Scholar 

  3. Feuerstein G, Hallenbeck JM. Leukotrienes in health and disease. FASEB J. 1987;1:186–92.

    Article  PubMed  Google Scholar 

  4. Grosser T, Fries S, FitzGerald GA. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest. 2006;116:4–15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res. 2009;50(Suppl):S423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lisowska B, Kosson D, Domaracka K. Lights and shadows of NSAIDs in bone healing: the role of prostaglandins in bone metabolism. Drug Des Devel Ther. 2018;12:1753–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Saul D, Ninkovic M, Komrakova M, Wolff L, Simka P, Gasimov T, Menger B, Hoffmann DB, Rohde V, Sehmisch S. Effect of zileuton on osteoporotic bone and its healing, expression of bone, and brain genes in rats. J Appl Physiol. 2018;124:118–30.

    Article  PubMed  Google Scholar 

  8. White AE, Henry JK, Dziadosz D. The Effect of Nonsteroidal Anti-inflammatory Drugs and Selective COX-2 Inhibitors on Bone Healing. HSS J. 2021;17:231–4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kam PC, See AU. Cyclo-oxygenase isoenzymes: physiological and pharmacological role. Anaesthesia. 2000;55:442–9.

    Article  PubMed  Google Scholar 

  10. Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002;109:1405–15.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Simon AM, O’Connor JP. Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am. 2007;89:500–11.

    Article  PubMed  Google Scholar 

  12. Brock TG. Regulating leukotriene synthesis: the role of nuclear 5-lipoxygenase. J Cell Biochem. 2005;96:1203–11.

    Article  PubMed  Google Scholar 

  13. Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med. 2007;357:1841–54.

    Article  PubMed  Google Scholar 

  14. Peters-Golden M. Cell biology of the 5-lipoxygenase pathway. Am J Respir Crit Care Med. 1998;157:S227–31.

    Article  PubMed  Google Scholar 

  15. Lee JM, Park H, Noh AL, Kang JH, Chen L, Zheng T, Lee J, Ji SY, Jang CY, Shin CS, Ha H, Lee ZH, Park HY, Lee DS, Yim M. 5-Lipoxygenase mediates RANKL-induced osteoclast formation via the cysteinyl leukotriene receptor 1. J Immunol. 2012;189:5284–92.

    Article  PubMed  Google Scholar 

  16. Offenbacher S, Odle BM, Van Dike TE. Endotoxin mediated leukotriene release from bone culture. J Den Res. 1986;65:351.

    Google Scholar 

  17. Gallwitz WE, Mundy GR, Lee CH, Qiao M, Roodman GD, Raftery M, Gaskell SJ, Bonewald LF. 5-Lipoxygenase metabolites of arachidonic acid stimulate isolated osteoclasts to resorb calcified matrices. J Biol Chem. 1993;268:10087–94.

    Article  PubMed  Google Scholar 

  18. Garcia C, Boyce BF, Gilles J, Dallas M, Qiao M, Mundy GR, Bonewald LF. Leukotriene B4 stimulates osteoclastic bone resorption both in vitro and in vivo. J Bone Miner Res. 1996;11:1619–27.

    Article  PubMed  Google Scholar 

  19. Bonewald LF, Flynn M, Qiao M, Dallas MR, Mundy GR, Boyce BF. Mice lacking 5-lipoxygenase have increased cortical bone thickness. Adv Exp Med Biol. 1997;433:299–302.

    Article  PubMed  Google Scholar 

  20. Manigrasso MB, O’Connor JP. Accelerated fracture healing in mice lacking the 5-lipoxygenase gene. Acta Orthop. 2010;81:748–55.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Biguetti CC, Couto MCR, Silva ACR, Shindo JVTC, Rosa VM, Shinohara AL, Andreo JC, Duarte MAH, Wang Z, Brotto M, Matsumoto MA. New surgical model for bone-muscle injury reveals age and gender-related healing patterns in the 5 lipoxygenase (5LO) knockout mouse. Front Endocrinol. 2020;11:484.

    Article  Google Scholar 

  22. Wixted JJ, Fanning PJ, Gaur T, O’Connell SL, Silva J, Mason-Savas A, Ayers DC, Stein GS, Lian JB. Enhanced fracture repair by leukotriene antagonism is characterized by increased chondrocyte proliferation and early bone formation: a novel role of the cysteinyl LT-1 receptor. J Cell Physiol. 2009;221:31–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cottrell JA, Keshav V, Mitchell A, O’Connor JP. Local inhibition of 5-lipoxygenase enhances bone formation in a rat model. Bone Joint Res. 2013;2:41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simionato GB, da Silva ACR, Oliva AH, de Abreu Furquim EM, Couto MCR, Shinohara AL, Biguetti CC, Matsumoto MA. Lack of 5-lipoxygenase in intramembranous and endochondral 129Sv mice skeleton and intramembranous healing. Arch Oral Biol. 2021;131: 105266.

    Article  PubMed  Google Scholar 

  25. Mahmoud RH, Biguetti CC, Simionato GB, Custódio IC, Silva RBP, Duarte MAH, Faverani LP, Ervolino E, Fakhouri WD, Matsumoto MA. Alveolar socket healing in 5-lipoxygenase knockout aged female mice treated or not with high dose of zoledronic acid. Sci Rep. 2021;11:19535.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bousquet J, Demoly P, Humbert M. Montelukast in guidelines and beyond. Adv Ther. 2009;26:575–87.

    Article  PubMed  Google Scholar 

  27. Krishnamoorthy M, Mohd Noor N, Mat Lazim N, Abdullah B. Efficacy of Montelukast in Allergic Rhinitis Treatment: A systematic review and meta-analysis. Drugs. 2020;80:1831–51.

    Article  PubMed  Google Scholar 

  28. Zheng C, Shi X. Cysteinyl leukotriene receptor 1 (cysLT1R) regulates osteoclast differentiation and bone resorption. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S64–70.

    Article  PubMed  Google Scholar 

  29. Wei J, Chen S, Huang C, Guo W, Yang S, Feng B, Chu J. Antagonism of cysteinyl leukot-riene receptor 1 (cysLT1R) by montelukast regulates differentiation of MC3T3-E1 cells under overloaded mechanical environment. Biochem Biophys Res Commun. 2018;495:995–1001.

    Article  PubMed  Google Scholar 

  30. Sabbah W, Slade GD, Sanders AE, Bernabé E. Denture wearing and mortality risk in edentulous American adults: A propensity score analysis. J Dent. 2020;100: 103360.

    Article  PubMed  Google Scholar 

  31. Bhattacharyya S, Choudhury S, Datta P, Pal AK, Roy S, Chatterjee R, De R, Chakraborty A, Saha S, Chowdhury AR. Assessment of jaw bone quality for designing patient-specific dental implant using computed tomography data. J Long Term Eff Med Implants. 2021;31:49–58.

    Article  PubMed  Google Scholar 

  32. Scarano A, Bernardi S, Rastelli C, Mortellaro C, Vittorini P, Falisi G. Soft tissue augmentation by means of silicon expanders prior to bone volume increase: a case series. J Biol Regul Homeost Agents. 2019;33(6 Suppl. 2):77–84.

    PubMed  Google Scholar 

  33. Bernardi S, Macchiarelli G, Bianchi S. Autologous materials in regenerative dentistry: harvested bone, platelet concentrates and dentin derivates. Molecules. 2020;25:5330.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bianchi S, Mancini L, Torge D, Cristiano L, Mattei A, Varvara G, Macchiarelli G, Marchetti E, Bernardi S. Bio-morphological reaction of human periodontal ligament fibroblasts to different types of dentinal derivates in vitro study. Int J Mol Sci. 2021;22:8681.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bianchi S, Bernardi S, Mattei A, Cristiano L, Mancini L, Torge D, Varvara G, Macchiarelli G, Marchetti E. Morphological and biological evaluations of human periodontal ligament fibroblasts in contact with different bovine bone grafts treated with low-temperature deproteinisation protocol. Int J Mol Sci. 2022;23:5273.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bianchi S, Torge D, Rinaldi F, Piattelli M, Bernardi S, Varvara G. Platelets’ role in dentistry: from oral pathology to regenerative potential. Biomedicines. 2022;10:218.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Hurst V, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol. 2020;18:e3000411.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Biguetti CC, Vieira AE, Cavalla F, Fonseca AC, Colavite PM, Silva RM, Trombone APF, Garlet GP. CCR2 contributes to F4/80+ cells migration along intramembranous bone healing in maxilla, but its deficiency does not critically affect the healing outcome. Front Immunol. 2018;9:1804.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86.

    Article  PubMed  Google Scholar 

  40. Laidler PM, Taga EM, Van Etten RL. Human liver acid phosphatases: cysteine residues of the low-molecular-weight enzyme. Arch Biochem Biophys. 1982;216:512–21.

    Article  PubMed  Google Scholar 

  41. Chaves Neto AH, Machado D, Yano CL, Ferreira CV. Antioxidant defense and apoptotic effectors in ascorbic acid and β-glycerophosphate-induced osteoblastic differentiation. Dev Growth Differ. 2011;53:88–96.

    Article  PubMed  Google Scholar 

  42. Granjeiro JM, Taga EM, Aoyama H. Purification and characterization of a low-molecular-weight bovine kidney acid phosphatase. An Acad Bras Cienc. 1997;69(4):451–60.

    PubMed  Google Scholar 

  43. Janckila AJ, Parthasarathy RN, Parthasarathy LK, Seelan RS, Hsueh YC, Rissanen J, Alatalo SL, Halleen JM, Yam LT. Properties and expression of human tartrate-resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol. 2005;77:209–18.

    Article  PubMed  Google Scholar 

  44. Karmen A. A note on the spectrometric assay of glutamic-oxalacetic transaminase in human blood serum. J Clin Invest. 1955;34:131–3.

    PubMed  Google Scholar 

  45. Henry RJ, Chiamorin N, Bolub OJ, Berkman S. Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase. Am J Clin Pathol. 1960;34:381–98.

    Article  PubMed  Google Scholar 

  46. Garcia C, Qiao M, Chen D, Kirchen M, Gallwitz W, Mundy GR, Bonewald LF. Effects of synthetic peptido-leukotrienes on bone resorption in vitro. J Bone Miner Res. 1996;11:521–9.

    Article  PubMed  Google Scholar 

  47. Traianedes K, Dallas MR, Garrett IR, Mundy GR, Bonewald LF. 5-Lipoxygenase metabolites inhibit bone formation in vitro. Endocrinology. 1998;139:3178–84.

    Article  PubMed  Google Scholar 

  48. Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium dental implants: an overview of applied nanobiotechnology to improve biocompatibility and prevent infections. Materials. 2022;15:3150.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Barone A, Ricci M, Tonelli P, Santini S, Covani U. Tissue changes of extraction sockets in humans: a comparison of spontaneous healing vs. ridge preservation with secondary soft tissue healing. Clin Oral Implants Res. 2013;24:1231–7.

    PubMed  Google Scholar 

  50. Shuto T, Sarkar G, Bronk JT, Matsui N, Bolander ME. Osteoblasts express types I and II activin receptors during early intramembranous and endochondral bone formation. J Bone Miner Res. 1997;12:403–11.

    Article  PubMed  Google Scholar 

  51. Denzlinger C, Rapp S, Hagmann W, Keppler D. Leukotrienes as mediators in tissue trauma. Science. 1985;230:330–2.

    Article  PubMed  Google Scholar 

  52. Akino K, Mineda T, Mori N, Hirano A, Imaizumi T, Akita S. Attenuation of cysteinyl leukotrienes induces human mesenchymal stem cell differentiation. Wound Repair Regen. 2006;14:343–9.

    Article  PubMed  Google Scholar 

  53. Kang JH, Lim H, Lee DS, Yim M. Montelukast inhibits RANKL-induced osteoclast formation and bone loss via CysLTR1 and P2Y12. Mol Med Rep. 2018;18:2387–98.

    PubMed  Google Scholar 

  54. Tintinger GR, Feldman C, Theron AJ, Anderson R. Montelukast: more than a cysteinyl leukotriene receptor antagonist? Sci World J. 2010;10:2403–13.

    Article  Google Scholar 

  55. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146:5358–64.

    Article  PubMed  Google Scholar 

  56. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, Lafage-Proust MH, Dresselaers T, Feng JQ, Bonewald LF, Meyer MB, Pike JW, Bouillon R, Carmeliet G. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Härle D, Rådmark O, Samuelsson B, Steinhilber D. Calcitriol and transforming growth factor-beta upregulate 5-lipoxygenase mRNA expression by increasing gene transcription and mRNA maturation. Eur J Biochem. 1998;254:275–81.

    Article  PubMed  Google Scholar 

  58. Seuter S, Väisänen S, Rådmark O, Carlberg C, Steinhilber D. Functional characterization of vitamin D responding regions in the human 5-Lipoxygenase gene. Biochim Biophys Acta. 2007;1771:864–72.

    Article  PubMed  Google Scholar 

  59. Stelmach I, Olszowiec-Chlebna M, Jerzynska J, Grzelewski T, Stelmach W, Majak P. Inhaled corticosteroids may have a beneficial effect on bone metabolism in newly diagnosed asthmatic children. Pulm Pharmacol Ther. 2011;24:414–20.

    Article  PubMed  Google Scholar 

  60. Everts V, de Vries TJ, Helfrich MH. Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta. 2009;1792:757–65.

    Article  PubMed  Google Scholar 

  61. Currie GP, Srivastava P, Dempsey OJ, Lee DK. Therapeutic modulation of allergic airways disease with leukotriene receptor antagonists. QJM. 2005;98:171–82.

    Article  PubMed  Google Scholar 

  62. Clarridge K, Chin S, Eworuke E, Seymour S. A Boxed Warning for Montelukast: The FDA Perspective. J Allergy Clin Immunol Pract. 2021;9:2638–41.

    Article  PubMed  Google Scholar 

  63. Incecik F, Onlen Y, Sangun O, Akoglu S. Probable montelukast-induced hepatotoxicity in a pediatric patient: case report. Ann Saudi Med. 2007;27:462–3.

    PubMed  PubMed Central  Google Scholar 

  64. Calapai G, Casciaro M, Miroddi M, Calapai F, Navarra M, Gangemi S. Montelukast-induced adverse drug reactions: a review of case reports in the literature. Pharmacology. 2014;94:60–70.

    Article  PubMed  Google Scholar 

  65. Lebensztejn DM, Bobrus-Chociej A, Kłusek M, Uscinowicz M, Lotowska J, Sobaniec-Lotowska M, Kaczmarski M. Hepatotoxicity caused by montelukast in a paediatric patient. Prz Gastroenterol. 2014;9:121–3.

    PubMed  PubMed Central  Google Scholar 

  66. El-Boghdady NA, Abdeltawab NF, Nooh MM. Resveratrol and Montelukast alleviate paraquat-induced hepatic injury in mice: modulation of oxidative stress, inflammation, and apoptosis. Oxid Med Cell Longev. 2017;2017:9396425.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pu S, Liu Q, Li Y, Li R, Wu T, Zhang Z, Huang C, Yang X, He J. Montelukast prevents mice against acetaminophen-induced liver injury. Front Pharmacol. 2019;10:1070.

    Article  PubMed  PubMed Central  Google Scholar 

  68. El-Kashef DH, Zaghloul RA. Ameliorative effect of montelukast against carbon tetrachloride-induced hepatotoxicity: Targeting NLRP3 inflammasome pathway. Life Sci. 2022;304: 120707.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

KHCR was supported by Fundação de Amparo à Pesquisa do Estado do Amazonas (Grant #42338.63998.1205.2019). MAM was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant #2019/16067-3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KHCR, RB ParraS, ACBR, AJMB, ACZB, EE, MAHD, WDF, AHCN, CCB, MAM. The first draft of the manuscript was written by CCB and MAM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariza Akemi Matsumoto.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1470 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, K.H.C., da Silva, R.B.P., Roseno, A.C.B. et al. Dose–response effect of Montelukast on post-extraction dental socket repair and skeletal phenotype of mice. Odontology 111, 891–903 (2023). https://doi.org/10.1007/s10266-023-00800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-023-00800-5

Keywords

Navigation