Skip to main content

Advertisement

Log in

Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Smoking is a risk factor for periodontitis, and the immune response of periodontal tissues in patients with periodontitis may be strongly affected by smoking. The purpose of this study was to elucidate the bioactivity and signal transduction of human gingival endothelial cells (HGECs) due to nicotinic stimulation using a cultured medium supplemented with lipopolysaccharide (LPS) as a model of periodontitis. HGECs were cultured in medium supplemented with LPS, nicotine, nicotine + LPS, and medium supplemented without nicotine or LPS (control). Cell proliferation was assessed using Alamar blue. Cytotoxicity was assessed by lactate dehydrogenase leakage. The expression of adhesion molecule-1 (ICAM-1, VCAM-1) was assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay. The expression of nicotinic acetylcholine receptor (nAChR) subunits (α3, α5, α7, β2 and β4) was evaluated by RT-PCR. The involvement of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C (PKC) cell signaling pathways in ICAM-1 and VCAM-1 expression was investigated by RT-qPCR with specific inhibitors. HGECs stimulated with LPS, nicotine and nicotine + LPS showed inhibition of cell proliferation, increase of cell death, and increase of gene and protein expression of ICAM-1. Moreover, HGECs showed the presence of α5 and α7 nAChR subunits. The expression of ICAM-1 in HGECs stimulated with LPS, nicotine, and nicotine + LPS was significantly suppressed by p38MAPK inhibitor, but not by a PKC inhibitor. The nAChR subunits of HGECs are α5 and α7, and that HGECs stimulated with nicotine and LPS express ICAM-1 via p38MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qasim). 2017;11:72–80.

    Google Scholar 

  2. Slots J. Periodontology: past, present, perspectives. Periodontol. 2000;2013(62):7–19.

    Google Scholar 

  3. Yang HW, Huang YF, Chou MY. Occurrence of Porphyromonas gingivalis and Tannerella forsythensis in periodontally diseased and healthy subjects. J Periodontol. 2004;75:1077–83.

    Article  PubMed  Google Scholar 

  4. Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev. 1998;62:1244–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chiang CY, Kyritsis G, Graves DT, Amar S. Interleukin-1 and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide. Infect Immun. 1999;67:4231–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nishida E, Hara Y, Kaneko T, Ikeda Y, Ukai T, Kato I. Bone resorption and local interleukin-1α and interleukin-1β synthesis induced by Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis lipopolysaccharide. J Periodont Res. 2001;36:1–8.

    Article  Google Scholar 

  7. Bergström J. Tobacco smoking and chronic destructive periodontal disease. Odontology. 2004;92:1–8.

    Article  PubMed  Google Scholar 

  8. Cuff MJ, McQuade MJ, Scheidt MJ, Sutherland DE, Van Dyke TE. The presence of nicotine on root surfaces of periodontally diseased teeth in smokers. J Periodontol. 1989;60:564–9.

    Article  PubMed  Google Scholar 

  9. Tanur E, McQuade MJ, McPherson JC, Al-Hashimi IH, Rivera-Hidalgo F. Effects of nicotine on the strength of attachment of gingival fibroblasts to glass and non-diseased human root surfaces. J Periodontol. 2000;71:717–22.

    Article  PubMed  Google Scholar 

  10. Raulin LA, McPherson JC 3rd, McQuade MJ, Hanson BS. The effect of nicotine on the attachment of human fibroblasts to glass and human root surfaces in vitro. J Periodontol. 1988;59:318–25.

    Article  PubMed  Google Scholar 

  11. Squier CA. Penetration of nicotine and nitrosonornicotine across porcine oral mucosa. J Appl Toxicol. 1986;6:123–8.

    Article  PubMed  Google Scholar 

  12. Nair MK, Chetty DJ, Ho H, Chien YW. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J Pharm Sci. 1997;86:257–62.

    Article  PubMed  Google Scholar 

  13. Li J, Liu S, Cao G, et al. Nicotine induces endothelial dysfunction and promotes atherosclerosis via GTPCH1. J Cell Mol Med. 2018;22:5406–17.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kindlová M, Trnková H. The vascular arrangement beneath the sulcular and junctional epithelium in different degrees of cellular infiltration of dog gingiva. J Periodont Res. 1972;7:323–7.

    Article  Google Scholar 

  15. Shimokawa H, Yasutake H, Fujii K, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol. 1996;28:703–11.

    Article  PubMed  Google Scholar 

  16. Simionescu M, Gafencu A, Antohe F. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech. 2002;57:269–88.

    Article  PubMed  Google Scholar 

  17. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    PubMed  Google Scholar 

  18. D’Amore PA, Thompson RW. Mechanisms of angiogenesis. Annu Rev Physiol. 1987;49:453–64.

    Article  PubMed  Google Scholar 

  19. Tsubokawa M, Sato S. In vitro analysis of human periodontal microvascular endothelial cells. J Periodontol. 2014;85:1135–42.

    Article  PubMed  Google Scholar 

  20. Albaugh G, Kann B, Strande L, Vemulapalli P, Hewitt C, Alexander JB. Nicotine induces endothelial TNF-α expression, which mediates growth retardation in vitro. J Surg Res. 2001;99:381–4.

    Article  PubMed  Google Scholar 

  21. Li XW, Wang H. Non-neuronal nicotinic alpha 7 receptor, a new endothelial target for revascularization. Life Sci. 2006;78:1863–70.

    Article  PubMed  Google Scholar 

  22. Ueno H, Pradhan S, Schlessel D, Hirasawa H, Sumpio BE. Nicotine enhances human vascular endothelial cell expression of ICAM-1 and VCAM-1 via protein kinase C, p38 mitogen-activated protein kinase, NF-κB, and AP-1. Cardiovasc Toxicol. 2006;6:39–50.

    Article  PubMed  Google Scholar 

  23. Hiyari S, Atti E, Camargo PM, et al. Heritability of periodontal bone loss in mice. J Periodont Res. 2015;50:730–6.

    Article  Google Scholar 

  24. Leira Y, Iglesias-Rey R, Gómez-Lado N, et al. Periodontitis and vascular inflammatory biomarkers: an experimental in vivo study in rats. Odontology. 2020;108:202–12.

    Article  PubMed  Google Scholar 

  25. Bozkurt SB, Hakki SS, Hakki EE, Durak Y, Kantarci A. Porphyromonas gingivalis lipopolysaccharide induces a pro-inflammatory human gingival fibroblast phenotype. Inflammation. 2017;40:144–53.

    Article  PubMed  Google Scholar 

  26. Wu X, Zhang G, Feng X, Li P, Tan Y. Transcriptome analysis of human periodontal ligament fibroblasts exposed to Porphyromonas gingivalis LPS. Arch Oral Biol. 2020;110: 104632.

    Article  PubMed  Google Scholar 

  27. Nakamura N, Yoshida M, Umeda M, et al. Extended exposure of lipopolysaccharide fraction from Porphyromonas gingivalis facilitates mononuclear cell adhesion to vascular endothelium via toll-like receptor-2 dependent mechanism. Atherosclerosis. 2008;196:59–67.

    Article  PubMed  Google Scholar 

  28. Wang X, Liu Y, Zhang S, et al. Crosstalk between Akt and NF-kappa B pathway mediates inhibitory effect of gas6 on monocytes-endothelial cells interactions stimulated by P. gingivalis-LPS. J Cell Mol Med. 2020;24:7979–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Xu X, Jin H, Yang X, Gu Q, Liu K. Effects of a thrombomodulin-derived peptide on monocyte adhesion and intercellular adhesion molecule-1 expression in lipopolysaccharide-induced endothelial cells. Mol Vis. 2013;19:203–12.

    PubMed  PubMed Central  Google Scholar 

  30. An N, Andrukhov O, Tang Y, et al. Effect of nicotine and Porphyromonas gingivalis lipopolysaccharide on endothelial cells in vitro. PLoS ONE. 2014;9: e96942.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bugueno IM, Khelif Y, Seelam N, et al. Porphyromonas gingivalis differentially modulates cell death profile in Ox-LDL and TNF-α pre-treated endothelial cells. PLoS ONE. 2016;11: e0154590.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Elmanfi S, Sintim HO, Zhou J, Gürsoy M, Könönen E, Gürsoy UK. Activation of gingival fibroblasts by bacterial cyclic dinucleotides and lipopolysaccharide. Pathogens. 2020;9:792.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Dong X, Yan Q, et al. Galectin-1 inhibited LPS-induced autophagy and apoptosis of human periodontal ligament stem cells. Inflammation. 2021;44:1302–14.

    Article  PubMed  Google Scholar 

  34. Taylor P. Agents acting at the neuromuscular junction and autonomic gangla. In: Hardman JG, Limbard LE, editors. The pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill; 1996. p. 191–3.

    Google Scholar 

  35. Albaugh G, Bellavance E, Strande L, Heinburger S, Hewitt CW, Alexander JB. Nicotine induces mononuclear leukocyte adhesion and expression of adhesion molecules, VCAM and ICAM, in endothelial cells in vitro. Ann Vasc Surg. 2004;18:302–7.

    Article  PubMed  Google Scholar 

  36. Wu X, Zhang H, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018;9:1–12.

    Article  Google Scholar 

  37. Zhao J, Liu Z, Chang Z. Lipopolysaccharide induces vascular endothelial cell pyroptosis via the SP1/RCN2/ROS signaling pathway. Eur J Cell Biol. 2021;100: 151164.

    Article  PubMed  Google Scholar 

  38. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol. 1995;15:2–10.

    Article  PubMed  Google Scholar 

  39. Rothlein R, Czajkowski M, O’Neill MM, Marlin SD, Mainolfi E, Merluzzi VJ. Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. Regulation by pharmacologic agents and neutralizing antibodies. J Immunol. 1988;141:1665–9.

    Article  PubMed  Google Scholar 

  40. Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989;243:1160–5.

    Article  PubMed  Google Scholar 

  41. Bevilacqua MP, Nelson RM, Mannori G, Cecconi O. Endothelial-leukocyte adhesion molecules in human disease. Annu Rev Med. 1994;45:361–78.

    Article  PubMed  Google Scholar 

  42. Liu B, Cheng L, Liu D, et al. Role of p38 mitogen-activated protein kinase pathway in Porphyromonas gingivalis lipopolysaccharide-induced VCAM-1 expression in human aortic endothelial cells. J Periodontol. 2012;83:955–62.

    Article  PubMed  Google Scholar 

  43. Wang CC, Lin WN, Lee CW, et al. Involvement of p42/p44 MAPK, p38 MAPK, JNK, and NF-κB in IL-1β-induced VCAM-1 expression in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2005;288:227–37.

    Article  Google Scholar 

  44. Binion DG, Heidemann J, Li MS, Nelson VM, Otterson MF, Rafiee P. Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF-κB: inhibitory role of curcumin. Am J Physiol Gastrointest Liver Physiol. 2009;297:259–68.

    Article  Google Scholar 

  45. Andrukhov O, Steiner I, Liu S, Bantleon HP, Moritz A, Rausch-Fan X. Different effects of Porphyromonas gingivalis lipopolysaccharide and TLR2 agonist Pam3CSK4 on the adhesion molecules expression in endothelial cells. Odontology. 2015;103:19–26.

    Article  PubMed  Google Scholar 

  46. Coe JW, Brooks PR, Vetelino MG, et al. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem. 2005;48:3474–7.

    Article  PubMed  Google Scholar 

  47. Conti-Fine BM, Navaneetham D, Lei S, Maus AD. Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol. 2000;393:279–94.

    Article  PubMed  Google Scholar 

  48. Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest. 2002;110:527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peña VB, Bonini IC, Antollini SS, Kobayashi T, Barrantes FJ. α7-type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. J Cell Biochem. 2011;112:3276–88.

    Article  PubMed  Google Scholar 

  50. Wang Y, Wang Z, Zhou Y, et al. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells. Int J Biochem Cell Biol. 2006;38:170–82.

    PubMed  Google Scholar 

  51. Zhao W, Ma G, Chen X. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway. Vascul Pharmacol. 2014;63:162–72.

    Article  PubMed  Google Scholar 

  52. Yan W, Zhao K, Jiang Y, et al. Role of p38 MAPK in ICAM-1 expression of vascular endothelial cells induced by lipopolysaccharide. Shock. 2002;17:433–8.

    Article  PubMed  Google Scholar 

  53. Schumann RR, Pfeil D, Lamping N, et al. Lipopolysaccharide induces the rapid tyrosine phosphorylation of the mitogen-activated protein kinases erk-1 and p38 in cultured human vascular endothelial cells requiring the presence of soluble CD14. Blood. 1996;87:2805–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to Hiroaki Katsuragi, Takao Morita, Akira Tanaka, and Koichi Shinkai for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YS, KM and MM. The first draft of the manuscript was written by YS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yukari Sato.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Maruyama, K., Mikami, M. et al. Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells. Odontology 111, 428–438 (2023). https://doi.org/10.1007/s10266-022-00753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00753-1

Keywords

Navigation