Skip to main content

Advertisement

Log in

Neural network approach to evaluate the physical properties of dentin

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

This study intended to evaluate the effects of inorganic trace elements such as magnesium (Mg), strontium (Sr), and zinc (Zn) on root canal dentin using an Artificial Neural Network (ANN). The authors obtained three hundred extracted human premolars from type II diabetic individuals and divided them into three groups according to the solutions used (Mg, Sr, or Zn). The authors subdivided the specimens for each experimental group into five subgroups according to the duration for which the authors soaked the teeth in the solution: 0 (control group), 1, 2, 5, and 10 min (n = 20). The authors then tested the specimens for root fracture resistance (RFR), surface microhardness (SμH), and tubular density (TD). The authors used the data obtained from half of the specimens in each subgroup (10 specimens) for the training of ANN. The authors then used the trained ANN to evaluate the remaining data. The authors analyzed the data by Kolmogorov–Smirnov, one-way ANOVA, post hoc Tukey, and linear regression analysis (P < 0.05). Treatment with Mg, Sr, and Zn significantly increased the values of RFR and SμH (P < 0.05), and decreased the values of TD in dentin specimens (P < 0.05). The authors did not notice any significant differences between evaluations by manual or ANN methods (P > 0.05). The authors concluded that Mg, Sr, and Zn may improve the RFR and SμH, and decrease the TD of root canal dentin in diabetic individuals. ANN may be used as a reliable method to evaluate the physical properties of dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collins H, Calvo S, Greenberg K, Forman Neall L, Morrison S. Information needs in the precision medicine era: how genetics home reference can help. Interact J Med Res. 2016;5(2): e13. https://doi.org/10.2196/ijmr.5199.

    Article  Google Scholar 

  2. National Diabetes Statistics Report. 2020. Centers for disease control and prevention. U.S. Dept of Health and Human Services

  3. Saghiri MA, Karamifar K, Fakharzadeh A, Conte M, Morgano SM. Effect of diabetes on tubular density and push-out bond strength of mineral trioxide aggregate to dentin. J Endod. 2020;46(11):1584–91. https://doi.org/10.1016/j.joen.2020.07.025.

    Article  Google Scholar 

  4. Saghiri MA, Nath D, Rahmani B, Amini S, Karamifar K, Peters OA. The effect of diabetes on fracture resistance of teeth: an in vitro study. Aust Endod J. 2021. https://doi.org/10.1111/aej.12512.

    Article  Google Scholar 

  5. Maciejewska K, Drzazga Z, Kaszuba M. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue. BioFactors. 2014;40(4):425–35. https://doi.org/10.1002/biof.1163.

    Article  Google Scholar 

  6. Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, Ghobrial M, Nath D, Morgano SM. Functional role of inorganic trace elements in dentin apatite Tissue—Part 1: Mg, Sr, Zn, and Fe. J Trace Elem in Med Biol. 2022. https://doi.org/10.1016/j.jtemb.2022.126932.

    Article  Google Scholar 

  7. Kumagai A, Fujita Y, Endo S, Itai K. Concentrations of trace element in human dentin by sex and age. Forensic Sci Int. 2012;219(1–3):29–32. https://doi.org/10.1016/j.forsciint.2011.11.012.

    Article  Google Scholar 

  8. Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S. Nanomaterials for tissue engineering in dentistry. Nanomaterials. 2016;6(7):134. https://doi.org/10.3390/nano6070134.

    Article  Google Scholar 

  9. Qu T, Jing J, Jiang Y, Taylor RJ, Feng JQ, Geiger B, Liu X. Magnesium-containing nanostructured hybrid scaffolds for enhanced dentin regeneration. Tissue Eng Part A. 2014;20(17–18):2422–33. https://doi.org/10.1089/ten.TEA.2013.0741.

    Article  Google Scholar 

  10. Toledano M, Osorio R, Vallecillo-Rivas M, Osorio E, Lynch CD, Aguilera FS, Toledano R, Sauro S. Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity. J Mech Behav Biomed Mater. 2020. https://doi.org/10.1016/j.jmbbm.2020.104232.

    Article  Google Scholar 

  11. Nguyen TT, Larrivée N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87(l7):1488–2159.

    Google Scholar 

  12. Daponte P, Grimaldi D. Artificial neural networks in measurements. Measurements. 1998;23:93. https://doi.org/10.1016/s0263-2241(98)00013-x.

    Article  Google Scholar 

  13. Mahmood H, Shaban M, Indave BI, Santos-Silva AR, Rajpoot N, Khurram SA. Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: a systematic review. Oral Oncol. 2020;110: 104885. https://doi.org/10.1016/j.oraloncology.2020.104885.

    Article  Google Scholar 

  14. Sosimi AA, Gbenebor OP, Oyerinde OS, Bakare OO, Adeosun SO, Olaleye SA. Analysing wear behaviour of Al–CaCO3 composites using ANN and Sugeno-type fuzzy inference systems. Neural Comput Appl. 2020;32(17):13453–64.

    Article  Google Scholar 

  15. Sadighpour L, Rezaei SMM, Paknejad M, Jafary F, Aslani P. The application of an artificial neural network to support decision making in edentulous maxillary implant prostheses. J Res Prac Dent. 2014; i1–10.

  16. Javed S, Zakirulla M, Baig RU, Asif SM, Meer AB. Development of artificial neural network model for prediction of post-streptococcus mutans in dental caries. Comput Methods Programs Biomed. 2020;186: 105198.

    Article  Google Scholar 

  17. Uzunoglu-Özyürek E, Küçükkaya Eren S, Eraslan O, Belli S. Critical evaluation of fracture strength testing for endodontically treated teeth: a finite element analysis study. Restor Dent Endod. 2019;44(2): e15. https://doi.org/10.5395/rde.2019.44.e15.

    Article  Google Scholar 

  18. Shahdad SA, McCabe JF, Bull S, Rusby S, Wassell RW. Hardness measured with traditional Vickers and Martens hardness methods. Dent Mater. 2007;23(9):1079–85. https://doi.org/10.1016/j.dental.2006.10.001.

    Article  Google Scholar 

  19. Larose DT. Discovering knowledge in data. New York: John Wiley & Sons; 2005. p. 105–20.

    Google Scholar 

  20. Negnevitsky M. Artificial Intelligence. CA, USA: Addison-Wesley; 2005. p. 185–9.

    Google Scholar 

  21. Roiger RJ. Data mining: a tutorial-based primer. Chapman and Hall/CRC. 2017. https://doi.org/10.1201/9781315382586.

    Article  Google Scholar 

  22. Imran M, Alsuhaibani SA. Chapter 7 - A neuro-fuzzy inference model for diabetic retinopathy classification. In: Hemanth DJ, Gupta D, Emilia BV, editors. Intell Data Anal Biomed Appl. New York: Academic Press; 2019. p. 147- 172. https://doi.org/10.1016/B978-0-12-815553-0.00007-0.

    Chapter  Google Scholar 

  23. Mao W, Wang FY. Chapter 8 - Cultural modeling for behavior analysis and prediction. In: Mao W, Wang F-Y, editors. New advances in intelligence and security informatics. New York: Academic Press; 2012. p. 91- 102. https://doi.org/10.1016/B978-0-12-397200-2.00008-7.

    Chapter  Google Scholar 

  24. Sairamya NJ, Susmitha L, Thomas George S, Subathra MSP. Chapter 12 - Hybrid approach for classification of electroencephalographic signals using time–frequency images with wavelets and texture features. In: Hemanth DJ, Gupta D, Emilia Balas V, editors. Intell Data Anal Biomed Appl. New York: Academic Press; 2019. p. 253- 273. https://doi.org/10.1016/B978-0-12-815553-0.00013-6.

    Chapter  Google Scholar 

  25. Larose DT. Data mining and predictive analytics. New York: John Wiley & Sons; 2015.

    Google Scholar 

  26. Barajas-Gamboa JS, Tarquino PF, Pedraza JE, Gonzalez-Nuñez D. Reaching a personalized medicine era: the dream of the drug market. Br J of Med Pract. 2016;9(3):5–7.

    Google Scholar 

  27. Genco RJ, Genco FD. Common risk factors in the management of periodontal and associated systemic diseases the dental setting and interprofessional collaboration. J Evid Based Dent Pract. 2014;14:4–16. https://doi.org/10.1016/j.jebdp.2014.03.003.

    Article  Google Scholar 

  28. Cabanillas-Balsera D, Martín-González J, Montero-Miralles P, Sánchez-Domínguez B, Jiménez-Sánchez MC, Segura-Egea JJ. Association between diabetes and nonretention of root filled teeth: a systematic review and meta-analysis. Int Endod J. 2019;52(3):297–306. https://doi.org/10.1111/iej.13011.

    Article  Google Scholar 

  29. Abbassy M, Watari I, Bakry A, Hamba H, Hassan AH, Tagami J, Ono T. Diabetes detrimental effects on enamel and dentine formation. J Dent. 2015;43(5):589–96.

    Article  Google Scholar 

  30. Saghiri MA, Sheibani N, Kawai T, Nath D, Dadvand S, Amini S, Vakhnovetsky J, Morgano SM. Diabetes negatively affects tooth enamel and dentine microhardness: an in-vivo study. Arch Oral Biol. 2022. https://doi.org/10.1016/j.archoralbio.2022.105434.

    Article  Google Scholar 

  31. Saeki K, Marshall GW, Gansky SA, Parkinson CR, Marshall SJ. Strontium effects on root dentin tubule occlusion and nanomechanical properties. Dent Mater. 2016;32(2):240–51.

    Article  Google Scholar 

  32. Bakhit A, Kawashima N, Hashimoto K, Noda S, Nara K, Kuramoto M, Tazawa K, Okiji T. Strontium ranelate promotes odonto-/osteogenic differentiation/mineralization of dental papillae cells in vitro and mineralized tissue formation of the dental pulp in vivo. Sci Rep. 2018;8(1):1–10.

    Article  Google Scholar 

  33. Eimar H, Ghadimi E, Marelli B, Vali H, Nazhat SN, Amin WM, Torres J, Ciobanu O, Junior RFA, Tamimi F. Regulation of enamel hardness by its crystallographic dimensions. Acta Biomater. 2012;8(9):3400–10. https://doi.org/10.1016/j.actbio.2012.06.002.

    Article  Google Scholar 

  34. Ghadimi E, Eimar H, Marelli B, Nazhat SN, Asgharian M, Vali H, Tamimi F. Trace elements can influence the physical properties of tooth enamel. Springerplus. 2013;2(1):1–12. https://doi.org/10.1186/2193-1801-2-499.

    Article  Google Scholar 

  35. Kong Y, Hu X, Zhong Y, Xu K, Wu B, Zheng J. Magnesium-enriched microenvironment promotes odontogenic differentiation in human dental pulp stem cells by activating ERK/BMP2/Smads signaling. Stem Cell Res Ther. 2019;10(1):1–11.

    Article  Google Scholar 

  36. Osorio R, Osorio E, Cabello I, Toledano M. Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res. 2014;48(4):276–90.

    Article  Google Scholar 

  37. Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: a review. Open Ceramics. 2021;6: 100122.

    Article  Google Scholar 

  38. Bigi A, Boanini E, Gazzano M. Ion substitution in biological and synthetic apatites. Biominer Biomater. 2016; 235–266.

  39. Bang LT, Long BD, Othman R. Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations. Sci World J. 2014. https://doi.org/10.1155/2014/969876.

    Article  Google Scholar 

  40. Umer F, Habib S. Critical analysis of artificial intelligence in endodontics: a scoping review. J Endod. 2022;48(2):152–60.

    Article  Google Scholar 

  41. Premaratne P. Human computer interaction using hand gestures. Berlin: Springer Science & Business Media; 2014.

    Book  Google Scholar 

  42. Ram Talib NS, Halmi MIE, Abd Ghani SS, Zaidan UH, Shukor MYA. Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM) approach for modelling the optimization of chromium(VI) reduction by newly isolated Acinetobacter radioresistens strain NS-MIE from agricultural soil. Biomed Res Int. 2019;2019:5785387. https://doi.org/10.1155/2019/5785387.

    Article  Google Scholar 

  43. Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, Karamifar K, Saghiri AM, Mehrvarzfar P, Garcia-Godoy F. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 2012;45(3):257–65. https://doi.org/10.1111/j.1365-2591.2011.01970.x.

    Article  Google Scholar 

  44. Jung S-K, Kim T-W. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofac Orthop. 2016;149(1):127–33.

    Article  Google Scholar 

  45. Durmuş HK, Özkaya E, Meriç C. The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminium alloy. Mater Design. 2006;27(2):156–9. https://doi.org/10.1016/j.matdes.2004.09.011.

    Article  Google Scholar 

  46. Saghiri MA, Saghiri AM. In memoriam: Dr. Hajar Afsar Lajevardi MD, MSc, MS (1955–2015). Iran J of Pediatr. 2017;27(1):1.

    Google Scholar 

Download references

Acknowledgements

MAS is a recipient of the New Jersey Health Foundation, TechAdvance, and DenburTech Awards. This publication is dedicated to the memory of Dr. H. Afsar Lajevardi [46], a legendary Pediatrician (1953–2015). The authors will never forget Dr. H Afsar Lajevardi's kindness and support. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the affiliated organizations. The authors hereby announce that they had active cooperation in this scientific study and preparation of the present article. The authors confirm that they have no financial involvement with any commercial company or organization with direct financial interest regarding the materials used in this study. Special thanks to Anna Vakhnovetsky for proofreading and Dr. Fatereh Samadi for interpreting the results in this research. The authors deny any conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Saghiri.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saghiri, M.A., Saghiri, A.M., Samadi, E. et al. Neural network approach to evaluate the physical properties of dentin. Odontology 111, 68–77 (2023). https://doi.org/10.1007/s10266-022-00726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-022-00726-4

Keywords

Navigation