Skip to main content

Advertisement

Log in

A universal adhesive incorporating antimicrobial peptide nisin: effects on Streptococcus mutans and saliva-derived multispecies biofilms

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

For purpose of enhancing the antibacterial activity of a universal adhesive, the antimicrobial peptide nisin was incorporated into Single Bond Universal and its antibacterial effect on Streptococcus mutans monospecific biofilms and saliva-derived multispecies biofilms was studied. Nisin was incorporated into Single Bond Universal and the antibacterial activity was examined by confocal laser scanning microscopy (CLSM), reverse transcription-quantitative polymerase chain reaction (qRT-PCR), phenol–sulfuric acid method and lactate dehydrogenase enzymatic method. The bonding properties were tested by microtensile bond strength (μTBS) and degree of conversion (DC). Data were analyzed by one-way analysis of variance (ANOVA) and least significant difference multiple comparison tests (P < 0.05). The Single Bond Universal incorporated with 3% (w/v) nisin could significantly inhibit the growth of the S. mutans monospecific biofilms (P< 0.01) and decrease the expression of genes related to extracellular polysaccharide (EPS) synthesis (gtfB, gtfC, gtfD and spaP) and acidogenicity (ldh) (P < 0.05). 3% (w/v) nisin-incorporated Single Bond Universal could also inhibit the growth of saliva-derived multispecies biofilms and decrease the excretion of EPS and lactic acid ( P< 0.05). μTBS and DC of 3% (w/v) nisin-incorporated Single Bond Universal did not deteriorate obviously (P > 0.05). In conclusion, 3% (w/v) nisin-incorporated Single Bond Universal substantially inhibited the growth of both S. mutans monospecific and saliva-derived multispecies biofilms without compromising the bonding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry–a review. FDI Commission project 1–97. Int Dent J. 2000;50(1):1–12.

    Article  Google Scholar 

  2. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28(1):87–101. https://doi.org/10.1016/j.dental.2011.09.003.

    Article  PubMed  Google Scholar 

  3. Elderton RJ. The prevalence of failure of restorations: a literature review. J Dent. 1976;4(5):207–10.

    Article  Google Scholar 

  4. Van Dijken JW, Pallesen U. Posterior bulk-filled resin composite restorations: a 5-year randomized controlled clinical study. Br Dent J. 2016;221(7):409. https://doi.org/10.1038/sj.bdj.2016.731.

    Article  Google Scholar 

  5. Moraschini V, Fai CK, Alto RM, Dos Santos GO. Amalgam and resin composite longevity of posterior restorations: a systematic review and meta-analysis. J Dent. 2015;43(9):1043–50. https://doi.org/10.1016/j.jdent.2015.06.005.

    Article  PubMed  Google Scholar 

  6. Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid I. Longevity of posterior dental restorations and reasons for failure. Eur J Oral Sci. 2012;120(6):539–48. https://doi.org/10.1111/eos.12004.

    Article  PubMed  Google Scholar 

  7. Dutra-Correa M, Leite A, de Cara S, Diniz IMA, Marques MM, Suffredini IB, Fernandes MS, Toma SH, Araki K, Medeiros IS. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J Dent. 2018;77:66–71. https://doi.org/10.1016/j.jdent.2018.07.010.

    Article  PubMed  Google Scholar 

  8. Totiam P, Gonzalez-Cabezas C, Fontana MR, Zero DT. A new in vitro model to study the relationship of gap size and secondary caries. Caries Res. 2007;41(6):467–73. https://doi.org/10.1159/000107934.

    Article  PubMed  Google Scholar 

  9. Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res. 2013;92(11):989–94. https://doi.org/10.1177/0022034513504436.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kramer N, Mohwald M, Lucker S, Domann E, Zorzin JI, Rosentritt M, Frankenberger R. Effect of microparticulate silver addition in dental adhesives on secondary caries in vitro. Clin Oral Investig. 2015;19(7):1673–81. https://doi.org/10.1007/s00784-014-1396-x.

    Article  PubMed  Google Scholar 

  11. Wu T, Li B, Zhou X, Hu Y, Zhang H, Huang Y, Xu HHK, Guo Q, Li M, Feng M, Peng X, Weir MD, Cheng L, Ren B. Evaluation of novel anticaries adhesive in a secondary caries animal model. Caries Res. 2018;52(1–2):14–21. https://doi.org/10.1159/000481832.

    Article  PubMed  Google Scholar 

  12. Zhang K, Wang S, Zhou X, Xu HH, Weir MD, Ge Y, Li M, Wang S, Li Y, Xu X, Zheng L, Cheng L. Effect of antibacterial dental adhesive on multispecies biofilms formation. J Dent Res. 2015;94(4):622–9. https://doi.org/10.1177/0022034515571416.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brandao NL, Portela MB, Maia LC, Antonio A, Silva V, Silva EMD. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization. J Appl Oral Sci. 2018;26:e20170270. https://doi.org/10.1590/1678-7757-2017-0270.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garcia IM, Leitune VCB, Visioli F, Samuel SMW, Collares FM. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin. J Dent. 2018;73:57–60. https://doi.org/10.1016/j.jdent.2018.04.003.

    Article  PubMed  Google Scholar 

  15. Tong Z, Ni L, Ling J. Antibacterial peptide nisin: a potential role in the inhibition of oral pathogenic bacteria. Peptides. 2014;60:32–40. https://doi.org/10.1016/j.peptides.2014.07.020.

    Article  PubMed  Google Scholar 

  16. Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, Rickard AH, Kapila YL. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol. 2015;6:617. https://doi.org/10.3389/fmicb.2015.00617.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cerrutti P, Terebiznik MR, Huergo MSD, Jagus R, Pilosof AMR. Combined effect of water activity and pH on the inhibition of Escherichia coli by Nisin. J Food Prot. 2001;64(10):1510–4. https://doi.org/10.4315/0362-028x-64.10.1510.

    Article  PubMed  Google Scholar 

  18. Rollema HS, Kuipers OP, Both P, De Vos WM, Siezen RJ. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl Environ Microbiol. 1995;61(8):2873–8.

    Article  Google Scholar 

  19. Su M, Yao S, Gu L, Huang Z, Mai S. Antibacterial effect and bond strength of a modified dental adhesive containing the peptide nisin. Peptides. 2018;99:189–94. https://doi.org/10.1016/j.peptides.2017.10.003.

    Article  PubMed  Google Scholar 

  20. Huang X, Zhang K, Deng M, Exterkate RAM, Liu C, Zhou X, Cheng L, Ten Cate JM. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol. 2017;82:256–62. https://doi.org/10.1016/j.archoralbio.2017.06.026.

    Article  PubMed  Google Scholar 

  21. Munoz MA, Luque I, Hass V, Reis A, Loguercio AD, Bombarda NH. Immediate bonding properties of universal adhesives to dentine. J Dent. 2013;41(5):404–11. https://doi.org/10.1016/j.jdent.2013.03.001.

    Article  PubMed  Google Scholar 

  22. Mena-Serrano A, Kose C, De Paula EA, Tay LY, Reis A, Loguercio AD, Perdigao J. A new universal simplified adhesive: 6-month clinical evaluation. J Esthet Restor Dent. 2013;25(1):55–69. https://doi.org/10.1111/jerd.12005.

    Article  PubMed  Google Scholar 

  23. Xie T, Liao Z, Lei H, Fang X, Wang J, Zhong Q. Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms. Microb Pathog. 2017;110:291–7. https://doi.org/10.1016/j.micpath.2017.07.011.

    Article  PubMed  Google Scholar 

  24. Wang Y, Wang X, Jiang W, Wang K, Luo J, Li W, Zhou X, Zhang L. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J Oral Microbiol. 2018;10(1):1442089. https://doi.org/10.1080/20002297.2018.1442089.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zeng H, Liu J, Ling J. Efflux inhibitor suppresses Streptococcus mutans virulence properties. FEMS Microbiol Lett. 2017. https://doi.org/10.1093/femsle/fnx033.

    Article  PubMed  Google Scholar 

  26. Cao L, Zhang ZZ, Xu SB, Ma M, Wei X. Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression inStreptococcus mutans. J Biomed Res. 2017;31(4):333–43. https://doi.org/10.7555/jbr.31.20150151.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou Y, Millhouse E, Shaw T, Lappin DF, Rajendran R, Bagg J, Lin H, Ramage G. Evaluating Streptococcus mutans Strain Dependent Characteristics in a Polymicrobial Biofilm Community. Front Microbiol. 2018;9:1498. https://doi.org/10.3389/fmicb.2018.01498.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One. 2015;10(5):e0121835. https://doi.org/10.1371/journal.pone.0121835.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem. 2005;339(1):69–72. https://doi.org/10.1016/j.ab.2004.12.001.

    Article  PubMed  Google Scholar 

  30. Sauro S, Osorio R, Watson TF, Toledano M. Assessment of the quality of resin-dentin bonded interfaces: an AFM nano-indentation, muTBS and confocal ultramorphology study. Dent Mater. 2012;28(6):622–31. https://doi.org/10.1016/j.dental.2012.02.005.

    Article  PubMed  Google Scholar 

  31. Thanaratikul B, Santiwong B, Harnirattisai C. Self-etch or etch-and-rinse mode did not affect the microshear bond strength of a universal adhesive to primary dentin. Dent Mater J. 2016;35(2):174–9. https://doi.org/10.4012/dmj.2015-109.

    Article  PubMed  Google Scholar 

  32. Eshmawi YT, Al-Zain AO, Eckert GJ, Platt JA. Variation in composite degree of conversion and microflexural strength for different curing lights and surface locations. J Am Dent Assoc. 2018;149(10):893–902. https://doi.org/10.1016/j.adaj.2018.06.004.

    Article  PubMed  Google Scholar 

  33. Mai S, Mauger MT, Niu LN, Barnes JB, Kao S, Bergeron BE, Ling JQ, Tay FR. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater. 2017;49:16–35. https://doi.org/10.1016/j.actbio.2016.11.026.

    Article  PubMed  Google Scholar 

  34. Hagiwara A, Imai N, Nakashima H, Toda Y, Kawabe M, Furukawa F, Delves-Broughton J, Yasuhara K, Hayashi SM. A 90-day oral toxicity study of nisin A, an anti-microbial peptide derived from Lactococcus lactis subsp. lactis, in F344 rats. Food Chem Toxicol. 2010;48(8–9):2421–8. https://doi.org/10.1016/j.fct.2010.06.002.

    Article  PubMed  Google Scholar 

  35. Tong Z, Dong L, Zhou L, Tao R, Ni L. Nisin inhibits dental caries-associated microorganism in vitro. Peptides. 2010;31(11):2003–8. https://doi.org/10.1016/j.peptides.2010.07.016.

    Article  PubMed  Google Scholar 

  36. Tong Z, Zhou L, Jiang W, Kuang R, Li J, Tao R, Ni L. An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans. Peptides. 2011;32(10):2021–6. https://doi.org/10.1016/j.peptides.2011.09.002.

    Article  PubMed  Google Scholar 

  37. Tong Z, Zhang L, Ling J, Jian Y, Huang L, Deng D. An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS One. 2014;9(6):e99513. https://doi.org/10.1371/journal.pone.0099513.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol. 2016;120(6):1449–65. https://doi.org/10.1111/jam.13033.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li M, Huang R, Zhou X, Qiu W, Xu X, Gregory RL. Effect of nicotine on cariogenic virulence of Streptococcus mutans. Folia Microbiol (Praha). 2016;61(6):505–12. https://doi.org/10.1007/s12223-016-0465-8.

    Article  PubMed  Google Scholar 

  40. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369(9555):51–9. https://doi.org/10.1016/S0140-6736(07)60031-2.

    Article  Google Scholar 

  41. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10. https://doi.org/10.3389/fcimb.2015.00010.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sutherland IW. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology. 2001;147(1):3–9. https://doi.org/10.1099/00221287-147-1-3.

    Article  PubMed  Google Scholar 

  43. Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR 3rd, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 2012;8(4):e1002623. https://doi.org/10.1371/journal.ppat.1002623.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Banas JA. Virulence properties of Streptococcus mutans. Front Biosci. 2004;9:1267–77.

    Article  Google Scholar 

  45. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev. 2007;71(4):653–70. https://doi.org/10.1128/mmbr.00024-07.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529–36. https://doi.org/10.1038/nrmicro1441.

    Article  PubMed  Google Scholar 

  47. Smith RN, Andersen RN, Kolenbrander PE. Inhibition of intergeneric coaggregation among oral bacteria by cetylpyridinium chloride, chlorhexidine digluconate and octenidine dihydrochloride. J Periodontal Res. 1991;26(5):422–8.

    Article  Google Scholar 

  48. Salz U, Mucke A, Zimmermann J, Tay FR, Pashley DH. pKa value and buffering capacity of acidic monomers commonly used in self-etching primers. J Adhes Dent. 2006;8(3):143–50.

    PubMed  Google Scholar 

  49. Chan KM, Tay FR, King NM, Imazato S, Pashley DH. Bonding of mild self-etching primers/adhesives to dentin with thick smear layers. Am J Dent. 2003;16(5):340–6.

    PubMed  Google Scholar 

  50. Arslan S, Ertas H, Zorba YO. Effect of a plant-based hemostatic agent on microleakage of self-etching adhesives. Med Oral Patol Oral Cir Bucal. 2013;18(1):e124–9.

    Article  Google Scholar 

  51. Meerbeek BV, Yoshihara K, Yoshida Y, Mine A, De MJ, Van LKL. State of the art of self-etch adhesives. Dent Mater. 2011;27(1):17–28.

    Article  Google Scholar 

  52. Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A. State of the art etch-and-rinse adhesives. Dent Mater. 2011;27(1):1–16.

    Article  Google Scholar 

  53. Wendl B, Droschl H, Kern W. A comparative study of polymerization lamps to determine the degree of cure of composites using infrared spectroscopy. Eur J Orthod. 2004;26(5):545–51.

    Article  Google Scholar 

  54. Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013;57(11):5572–9. https://doi.org/10.1128/aac.00888-13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81873712) and the Science Foundation of Guangzhou (Grant No. 201904010057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sui Mai or Lisha Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hospital of Stomatology, Sun Yat-sen University (Grant No. ERC-[2016]-43) and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Qu, Y., Liu, J. et al. A universal adhesive incorporating antimicrobial peptide nisin: effects on Streptococcus mutans and saliva-derived multispecies biofilms. Odontology 108, 376–385 (2020). https://doi.org/10.1007/s10266-019-00478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-019-00478-8

Keywords

Navigation