Skip to main content

Advertisement

Log in

Long-term durability of orthodontic mini-implants

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

The current study aimed at examining surface and chemical composition changes of retrieved mini-implants after different periods of service as aids of anchorage for orthodontic patients. This study examined 72 retrieved orthodontic self-tapping and self-drilling mini-implants, 1.7 mm in diameter and 8 mm in length (OrthoEasy system, Forestadent, Pforzheim, Germany) from 36 adult orthodontic patients (18 men and 18 women, mean age = 23 years). The retrieved mini-implants were divided into 3 groups according to service period: 3–6 months (3M–6M) group, 6–12 months (6M–12M) group, and 12–24 months (12M–24M) group, with 24 mini-implants in each group. The control group (As Received) comprised of 24 unused mini-implants of the same type (AR group). All mini-implant heads and threaded bodies were examined for chemical characterization and topographical features by SEM–EDS. The average weight percentages for the following elements Ti, Al, and O2 were obtained and compared among the 4 groups. There was significant decrease in titanium content and deterioration for the surface properties for all parts of the mini-implants after being used inside patients’ oral cavities for more than 6 months p < 0.05. The period of mini-implant service inside patients’ oral cavities should not exceed 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vilani GN, Ruellas AC, Mattos CT, Fernandes DJ, Elias CN. Influence of cortical thickness on the stability of mini-implants with microthreads. Braz Oral Res. 2015;29:1–7.

    Article  Google Scholar 

  2. Favero L, Brollo P, Bressan E. Orthodontic anchorage with specific fixtures: related study analysis. Am J Orthod Dentofac Orthop. 2002;122:84–94.

    Article  Google Scholar 

  3. Huang LH, Shotwell JL, Wang HL. Dental implants for orthodontic anchorage. Am J Orthod Dentofac Orthop. 2005;127:713–22.

    Article  Google Scholar 

  4. Kuroda S, Katayama A, Takano-Yamamoto T. Severe anterior open-bite case treated using titanium screw anchorage. Angle Orthod. 2004;74:558–67.

    PubMed  Google Scholar 

  5. Miyawaki S, Koyama I, Inoue M, et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofac Orthop. 2003;124:373–8.

    Article  Google Scholar 

  6. Park YC, Lee SY, Kim DH, Jee SH. Intrusion of posterior teeth using mini-screw implants. Am J Orthod Dentofac Orthop. 2003;123:690–4.

    Article  Google Scholar 

  7. Zawawi KH. Acceptance of orthodontic miniscrews as temporary anchorage devices. Patient Preference Adherence. 2014;8:933–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Justens E, De Bruyn H. Clinical outcome of mini-screws used as orthodontic anchorage. Clin Implant Dent Relat Res. 2008;10:174–80.

    Article  PubMed  Google Scholar 

  9. Ichinose S, Muneta T, Sekiya I, et al. The study of metal ion release and cytotoxicity in Co–Cr–Mo and Ti–Al–V alloy in total knee prosthesis—scanning electron microscopic observation. J Mater Sci Mater Med. 2003;14:79–86.

    Article  PubMed  Google Scholar 

  10. Schatzle M, Mannchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res. 2009;20:1351–9.

    Article  PubMed  Google Scholar 

  11. Buchter A, Wiechmann D, Koerdt S, et al. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005;16:473–9.

    Article  PubMed  Google Scholar 

  12. Abbassy MABA. The effect of fluoride on beta-titanium orthodontic wires surface texture and friction resistance. Int J Dent Oral Sci. 2015;2:47–52.

    Google Scholar 

  13. Yokoyama K, Kaneko K, Ogawa T, et al. Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials. 2005;26:101–8.

    Article  PubMed  Google Scholar 

  14. Chassot E, Irigaray JL, Terver S, Vanneuville G. Contamination by metallic elements released from joint prostheses. Med Eng Phys. 2004;26:193–9.

    Article  PubMed  Google Scholar 

  15. Sedarat C, Harmand MF, Naji A, Nowzari H. In vitro kinetic evaluation of titanium alloy biodegradation. J Periodontal Res. 2001;36:269–74.

    Article  PubMed  Google Scholar 

  16. Meyer U, Buhner M, Buchter A, et al. Fast element mapping of titanium wear around implants of different surface structures. Clin Oral Implants Res. 2006;17:206–11.

    Article  PubMed  Google Scholar 

  17. Urban RM, Jacobs JJ, Tomlinson MJ, et al. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am. 2000;82:457–76.

    Article  PubMed  Google Scholar 

  18. Licausi MP, Igual Munoz A, Amigo Borras V. Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva. J Mech Behav Biomed Mater. 2013;20:137–48.

    Article  PubMed  Google Scholar 

  19. Patil P, Kharbanda OP, Duggal R, Das TK, Kalyanasundaram D. Surface deterioration and elemental composition of retrieved orthodontic miniscrews. Am J Orthod Dentofac Orthop. 2015;147:S88–100.

    Article  Google Scholar 

  20. Eliades T, Zinelis S, Papadopoulos MA, Eliades G. Characterization of retrieved orthodontic miniscrew implants. Am J Orthod Dentofac Orthop. 2009;135:10e1–7 (discussion -1).

    Google Scholar 

  21. de Morais LS, Serra GG, Albuquerque Palermo EF, et al. Systemic levels of metallic ions released from orthodontic mini-implants. Am J Orthod Dentofac Orthop. 2009;135:522–9.

    Article  Google Scholar 

  22. Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res. 1999;78:1568–72.

    Article  PubMed  Google Scholar 

  23. Abbassy MA. Fluoride influences nickel-titanium orthodontic wires’ surface texture and friction resistance. J Orthod Sci. 2016;5:121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mabilleau G, Bourdon S, Joly-Guillou ML, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006;2:121–9.

    Article  PubMed  Google Scholar 

  25. Mathew MT, Abbey S, Hallab NJ, et al. Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: synergistic interactions of wear and corrosion. J Biomed Mater Res B Appl Biomater. 2012;100:1662–71.

    Article  PubMed  Google Scholar 

  26. Zhao B, Wang H, Qiao N, Wang C, Hu M. Corrosion resistance characteristics of a Ti–6Al–4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater Sci Eng C Mater Biol Appl. 2017;70:832–41.

    Article  PubMed  Google Scholar 

  27. Steinemann SG. Metal implants and surface reactions. Injury. 1996;27(Suppl 3):SC16–22.

    PubMed  Google Scholar 

  28. Scales JT. Black staining around titanium alloy prostheses—an orthopaedic enigma. J Bone Joint Surg Br. 1991;73:534–6.

    Article  PubMed  Google Scholar 

  29. Cadosch D, Chan E, Gautschi OP, Filgueira L. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening—current concepts. J Biomed Mater Res A. 2009;91:1252–62.

    Article  PubMed  Google Scholar 

  30. Cadosch D, Schlett CL, Gautschi OP, Frei HC, Filgueira L. Metal ions: important co-players in aseptic loosening. Z Orthop Unfall. 2010;148:393–7.

    Article  PubMed  Google Scholar 

  31. Cadosch D, Chan E, Gautschi OP, et al. Titanium IV ions induced human osteoclast differentiation and enhanced bone resorption in vitro. J Biomed Mater Res A. 2009;91:29–36.

    Article  PubMed  Google Scholar 

  32. Woodman JL, Jacobs JJ, Galante JO, Urban RM. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res. 1984;1:421–30.

    Article  PubMed  Google Scholar 

  33. Garcia-Alonso MC, Saldana L, Valles G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials. 2003;24:19–26.

    Article  PubMed  Google Scholar 

  34. Saldana L, Barranco V, Garcia-Alonso MC, et al. Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. J Biomed Mater Res A. 2006;77:220–9.

    Article  PubMed  Google Scholar 

  35. Wennerberg A, Ide-Ektessabi A, Hatkamata S, et al. Titanium release from implants prepared with different surface roughness. Clin Oral Implants Res. 2004;15:505–12.

    Article  PubMed  Google Scholar 

  36. Weingart D, Steinemann S, Schilli W, et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofac Surg. 1994;23:450–2.

    Article  PubMed  Google Scholar 

  37. Liu P, Yao YN, Wu SD, et al. The efficacy of deferiprone on tissues aluminum removal and copper, zinc, manganese level in rabbits. J Inorg Biochem. 2005;99:1733–7.

    Article  PubMed  Google Scholar 

  38. Rae T. The biological response to titanium and titanium–aluminium–vanadium alloy particles. I. Tissue culture studies. Biomaterials. 1986;7:30–6.

    Article  PubMed  Google Scholar 

  39. Ys T. Research progress on laser surface modification of titanium alloys. Appl Surf Sci. 2005;242:177–84.

    Article  Google Scholar 

  40. Heinemann G, Fichtl B, Vogt W. Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium containing albumin solution. Br J Clin Pharmacol. 2003;55:241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brune D. Metal release from dental biomaterials. Biomaterials. 1986;7:163–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant number 339/165/1433. The authors therefore acknowledge with thanks (DSR) for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Aly Abbassy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbassy, M.A., Bakry, A.S., Zawawi, K.H. et al. Long-term durability of orthodontic mini-implants. Odontology 106, 208–214 (2018). https://doi.org/10.1007/s10266-017-0319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-017-0319-0

Keywords

Navigation