Skip to main content
Log in

Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O2 and mitochondrial cytochrome-c release

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The programmed cell death (PCD) occurs when the targeted cells have fulfilled their task or under conditions as oxidative stress generated by ROS species. Thus, plants have to deal with the singlet oxygen 1O2 produced in chloroplasts. 1O2 is unlikely to act as a primary retrograde signal owing to its high reactivity and short half-life. In addition to its high toxicity, the 1O2 generated under an excess or low excitation energy might also act as a highly versatile signal triggering chloroplast-to-nucleus retrograde signaling (ChNRS) and nuclear reprogramming or cell death. Molecular and biochemical studies with the flu mutant, which accumulates protochlorophyllide in the dark, demonstrated that chloroplastic 1O2-driven EXECUTER-1 (EX1) and EX2 proteins are involved in the 1O2-dependent response. Both EX1 and EX2 are necessary for full suppression of 1O2-induced gene expression. That is, EXECUTER proteolysis via the ATP-dependent zinc protease (FtsH) is an integral part of 1O2-triggered retrograde signaling. The existence of at least two independent ChNRS involving EX1 and β-cyclocitral, and dihydroactinidiolide and OXI1, respectively, seem clear. Besides, this update also focuses on plant PCD and its relation with mitochondrial cytochrome-c (Cytc) release to cytosol. Changes in the dynamics and morphology of mitochondria were shown during the onset of cell death. The mitochondrial damage and translocation of Cytc may be one of the major causes of PCD triggering. Together, this current overview illustrates the complexity of the cellular response to oxidative stress development. A puzzle with the majority of its pieces still not placed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Pchlide:

Protochlorophyllide

EX1:

Executer protein1

ChNRS:

Chloroplast-to-nucleus retrograde signaling

OXI1:

Oxidative signal inducible-1

SORGs:

Singlete 1O2 responsible genes

PCD:

Programmed cell death

ROS:

Reactive oxygen species

1O2 :

Singlet oxygen

flu :

fluorescent in blue light Mutant

SA:

Salycilic acid

EF:

Chloroplast elongation factor-G

SAFE1:

1O2-SAFEGUARD1

GST:

Glutathione S-Transferase

SIBI1:

Sigma factor-binding protein-1

CytC:

Cytochrome-c

References

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    CAS  PubMed  Google Scholar 

  • Allorent G, Osorio S, Vu JL, Falconet D, Jouhet J, Kuntz M, Fernie AR, Lerbs-Mache S, Macherel D, Courtois F, Finazzi G (2015) Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. New Phytol 205:707–719

    CAS  PubMed  Google Scholar 

  • Ambastha V, Tripathy BC, Tiwari BS (2015) Programmed cell death in plants: A chloroplastic connection. Plant Signal Behav 10:e989752

    PubMed  PubMed Central  Google Scholar 

  • Bailly C (2019) The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J 476:3019–3032

    CAS  PubMed  Google Scholar 

  • Balk J, Leaver ChJ, McCabe PF (1999) Translocation of cytochrome-c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    CAS  PubMed  Google Scholar 

  • Balk J, Leaver ChJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome-c release. Plant Cell 13:1803–1818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baskar V, Venkatesh R, Ramalingam S (2018) Flavonoids (antioxidants systems) in higher plants and their response to stresses. In: Gupta DK, Palma J, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Switzerland, pp 253–268

    Google Scholar 

  • Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beaugelin I, Chevalier A, D’Alessandro S, Ksas B, Novák O, Strnad M, Forzani C, Hirt H, Havaux M, Monnet F (2019) OXI1 and DAD regulate light-induced cell death antagonistically through jasmonate and salicylate levels. Plant Physiol 180:1691–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidle KD (2016) Programmed cell death in unicellular phytoplankton. Curr Biol 26:R594–R607

    CAS  PubMed  Google Scholar 

  • Birch PRJ, Avrova AO, Dellagi A, Lacomme C, Cruz SS, Lyon GD (2018) Programmed cell death in plants in response to pathogen attack. Ann Plant Rev. https://doi.org/10.1002/9781119312994

    Article  Google Scholar 

  • Biswas MS, Mano J (2016) Reactive carbonyl species activate caspase-3-like protease to initiate programmed cell death in plants. Plant Cell Physiol 57:1432–1442

    PubMed  Google Scholar 

  • Blázquez-Castro A (2017) Direct 1O2 optical excitation: a tool for redox biology. Redox Biol 13:39–59

    PubMed  PubMed Central  Google Scholar 

  • Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182:17–30

    CAS  PubMed  Google Scholar 

  • Brzezowski P, Wilson KE, Gray GR (2012) The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signalling. Planta 236:1289–1303

    CAS  PubMed  Google Scholar 

  • Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta 1847:968–985

    CAS  PubMed  Google Scholar 

  • Bruggeman Q, Raynaud C, Benhamed M, Delarue M (2015) To die or not to die?—Lessons from lesion mimic mutants. Front Plant Sci 6:24

    PubMed  PubMed Central  Google Scholar 

  • Čamagajevac IS, Pfeiffer TZ, Maronic DS (2018) Abiotic stress response in plants: the relevance of tocopherols. In: Gupta DK et al (eds) Antioxidants and antioxidant enzymes in higher plants. Springer International Publishing AG, pp 233–251

  • Carmody M, Crisp PA, D’alessandro S, Ganguly D, Gordon M, Havaux M et al (2016) Uncoupling high light responses from singlet oxygen retrograde signaling and spatial-temporal systemic acquired acclimation. Plant Physiol 171:1734–1749

  • Colombatti F, González DH, Welchen E (2014) Plant mitochondria under pathogen attack: a sigh of relief or a last breath? Mitochondrion 19:238–244

    CAS  PubMed  Google Scholar 

  • Corpas FJ, del Río LA, Palma JM (2019) Impact of nitric oxide (NO) on the ROS metabolism of peroxisomes. Plants-Basel 8:37

    CAS  PubMed Central  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 22:4–20

    Google Scholar 

  • Cheng XX, Min Y, Nan Z, Zhou ZQ, Xu QT, Mei FZ, Qu LH (2016) Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 253:311–327

    CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Izbiańska K, Deckert J (2015) Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. Front Plant Sci 6:405

    PubMed  PubMed Central  Google Scholar 

  • Choudhury KF, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Choudhary A, Kumar A, Kaur N (2020) ROS and oxidative burst: Roots in plant development. Plant Divers 42:33–43

    PubMed  Google Scholar 

  • D’Alessandro S, Ksas B, Havaux M (2018) Decoding β-cyclocitral-mediated retrograd signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell 30:2495–2511

  • D’Alessandro S, Mizokami Y, Légeret B, Havaux M (2019) The apocarotenoid β-cyclocitric acid elicits drought tolerance in plants. iScience 19:461–473

  • Daneva A, Gao Z, Van Durme M, Nowack MK (2016) Functions and regulation of programmed cell death in plant development. Ann Rev Cell Dev Biol 32:441–468

    CAS  Google Scholar 

  • Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25

    CAS  PubMed  Google Scholar 

  • Deng Y, Zou W, Li G, Zhao J (2014) TRANSLOCASE OF THE INNER MEMBRANE9 and 10 are essential for maintaining mitochondrial function during early embryo cell and endosperm free nucleus divisions in Arabidopsis. Plant Physiol 166:853–868

    PubMed  PubMed Central  Google Scholar 

  • Diamond M, McCabe PF (2007) The mitochondrion and plant programmed cell death. Ann Plant Rev 31:308–334

    CAS  Google Scholar 

  • Díaz-Moreno I, Velázquez-Cruz A, Curran-French S, Díaz-Quintana A, de la Rosa MA (2018) Nuclear cytochrome c: a mitochondrial visitor regulating damaged chromatin dynamics. FEBS Lett 592:172–178

    PubMed  Google Scholar 

  • Dickinson AJ, Lehner K, Mi J, Jia KP, Mijar M, Dinneny J, Al-Babili S, Benfey PN (2019) β-Cyclocitral is a conserved root growth regulator. Proc Nat Acad Sci USA 116:10563–10567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman MB, Fluhr R (2013) Centrality of host cell death in plant-microbe interactions. Ann Rev Phytopathol 51:543–570

    CAS  Google Scholar 

  • Dmitrieva VA, Tyuterevaand EV, Voitsekhovskaja OV (2020) Singlet oxygen in plants: generation, detection, and signaling roles. Plants-Basel 21:3233

    Google Scholar 

  • Domínguez F, Cejudo FJ (2014) Programmed cell death (PCD): an essential process of cereal seed development and germination. Front Plant Sci 5:366

    PubMed  PubMed Central  Google Scholar 

  • Dogra V, Duan J, Lee KP, Lv S, Liu R, Kim C (2017) FtsH2-dependent proteolysis of executer1 is essential in mediating singlet oxygen-triggered retrograde signaling in Arabidopsis thaliana. Front Plant Sci 8:1145

    PubMed  PubMed Central  Google Scholar 

  • Dogra V, Rochaix JD, Kim C (2018) Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: an emerging perspective. Plant Cell Environ 41:1727–1738

    CAS  PubMed  Google Scholar 

  • Dogra V, Li M, Singh S, Li M, Kim Ch (2019) Oxidative post-translational modification of EXECUTER1 is required for singlet oxygen sensing in plastids. Nature Comm 10:2834

    Google Scholar 

  • Dogra V, Kim Ch (2020) Singlet oxygen metabolism: from genesis to signaling. Front Plant Sci 10:1640

    PubMed  PubMed Central  Google Scholar 

  • Dourmap C (2020) Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. Ann Bot 125:721–736

    CAS  PubMed  Google Scholar 

  • Du YL, Wang ZY, Fan JW, Turner NC, He J, Wang T, Li FM (2013) Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. Funct Plant Biol 40:494–506

    CAS  PubMed  Google Scholar 

  • Duan J, Lee KP, Dogra V, Zhang S, Liu K, Cáceres-Moreno C et al (2019) Impaired PSII proteostasis promotes retrograde signaling via salicylic acid. Plant Physiol 180:2182–2197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durand PM, Sym S, Michod RE (2016) Programmed cell death and complexity in microbial systems. Curr Biol 26:R587–R593

    CAS  PubMed  Google Scholar 

  • El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77

    PubMed  PubMed Central  Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2014) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374

    PubMed  Google Scholar 

  • Fan HY, Zhou ZQ, Yang CN, Jiang Z, Li JT, Cheng XX, Guo YJ (2013) Effects of waterlogging on amyloplasts and programmed cell death in endosperm cells of Triticum aestivum L. Protoplasma 250:1091–1103

    CAS  PubMed  Google Scholar 

  • Fath A, Bethke P, Londsale J, Meza-Romero R, Jones R (2000) Programmed cell death in cereal aleurone. Plant Mol Biol 44:255–266

    CAS  PubMed  Google Scholar 

  • Fischer BB, Krieger-Liszkay A, Hideg E, Snyrychova I, Wiesendanger M, Eggen RIL (2007) Role of singlet oxygen in chloroplast to nucleus retrograde signalling in Chlamydomonas reinhardtii. FEBS Lett 581:5555–5560

    CAS  PubMed  Google Scholar 

  • Fischer BB, Eggen RIL, Niyogi KK (2010) Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii. BMCPlant Biol 10:279

    CAS  Google Scholar 

  • Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18:2145–2162

    CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  PubMed  Google Scholar 

  • Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474:877–883

    CAS  PubMed  Google Scholar 

  • Fujimoto M (2018) Transcriptional switch programmed cell death in pith parechyma of sorgum stems. Proc Natl Acad Sci USA 115:E8783–E8792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Gao F, Jordan MC, Ayele BT (2018) Microarray dataset of after-ripening induced mRNA oxidation in wheat seeds. Data Brief 21:852–855

    PubMed  PubMed Central  Google Scholar 

  • Gao X, Ruan X, Sun Y, Wang X, Feng B (2019) BAKing up to survive a battle: functional dynamics of BAK1 in plant programmed cell death. Front Plant Sci 9:1913

    PubMed  PubMed Central  Google Scholar 

  • Gladish DK (2015) Vascular aerenchyma and PCD. In: Gunawardena AN, McCabe PF (eds) Plant programmed cell death. Springer International Publishing Switzerland, pp 97–121

  • Golovina EA, Hoekstra FA, van Aelst AC (2000) Programmed cell death or desiccation tolerance: two possible routes for wheat endosperm cells. Seed Sci Res 10:365–379

    Google Scholar 

  • González-Arzola K, Díaz-Quintana A, Rivero-Rodríguez F, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I (2017) Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome-c. Nucleic Acid Res 45:2150–2165

    PubMed  Google Scholar 

  • González-Arzola K, Velázquez-Cruz A, Guerra-Castellano A, Casado-Combreras MA, Pérez-Mejías G, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MA (2019) New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Lett 593:3101–3119

    PubMed  Google Scholar 

  • Höwing T, Dann M, Hoefle C, Hückelhoven R, Gietl C (2017) Involvement of A. thaliana endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildewinduced and AtCPR5-controlled cell death. PLOS ONE 12:e0183870

  • Hua W, Li RJ, Zhan GM, Liu J, Li J, Wang XF, Liu GH, Wang HZ (2012) Maternal control of seed oil content in Brassica napus: The role of silique wall photosynthesis. Plant J 69:432–444

    CAS  PubMed  Google Scholar 

  • Huysmans M, Coll NS, Nowack MK (2017) Dying two deaths: programmed cell death regulation in development and disease. Curr Op Plant Biol 35:37–44

    CAS  Google Scholar 

  • Huysmans M, Buono RA, Skorzinski N, Radio MC, Winter F, Parizot B, Mertens J, Karimi M, Fendrych M, Nowack MK (2018) NAC Transcription Factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap. Plant Cell 30:2197–2213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Fernández R, Matilla MA (2016) Flooding stress and O2-shortage in plants: An overview. In: Ahmad P (ed) Water stress and crop plants. Wiley, pp 711–731. Doi:https://doi.org/10.1002/9781119054450.ch41

  • Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–102

    CAS  PubMed  Google Scholar 

  • Jacoby RP, Li L, Huang S, Pong Lee C, Millar AH, Taylor NL (2012) Mitochondrial composition, function and stress response in plants. J Integr Plant Biol 54:887–906

    CAS  PubMed  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4:393–411

    PubMed  PubMed Central  Google Scholar 

  • Jan N, Hussain M, Andrabi KI (2008) Programmed cell death or apoptosis: Do animals and plants share anything in common. Biotech Mol Biol 3:111–126

    Google Scholar 

  • Janku M, Luhová L, Petrivalský M (2019) On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants-Basel 8:105

    CAS  PubMed Central  Google Scholar 

  • Järvi S, Suorsa M, Aro E-M (2015) Photosystem II repair in plant chloroplasts—Regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim Biophys Acta 1847:900–909

    PubMed  Google Scholar 

  • Jurdak R, Launay-Avon A, Paysant-Le Roux Ch, Bailly Ch (2020) Retrograde signalling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of Arabidopsis thaliana seeds. New Phytol. https://doi.org/10.1111/nph.16985

    Article  PubMed  Google Scholar 

  • Kabbage M, Kessens R, Bartholomay LC, Williams B (2017) The life and death of a plant cell. Ann Rev Plant Biol 68:375–404

    CAS  Google Scholar 

  • Kärkönena A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32

    Google Scholar 

  • Kato Y, Sakamoto W (2018) FtsH protease in the thylakoid membrane: physiological functions and the regulation of protease activity. Front Plant Sci 9:855

    PubMed  PubMed Central  Google Scholar 

  • Kaur N, Dhawan M, Sharma I, Pati PK (2016) Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol 16:131

    PubMed  PubMed Central  Google Scholar 

  • Kaurilind E, Xu E, Brosché M (2015) A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 16:837

    PubMed  PubMed Central  Google Scholar 

  • Kaurilind E, Brosché M (2017) Stress marker signatures in lesion mimic single and double mutants indentify a crucial leaf age-dependent salicylic acid related defense signal. PLoS ONE 12:e0170532

    PubMed  PubMed Central  Google Scholar 

  • Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E (2020) Oxygen and ROS in photosynthesis. Plants-Basel 9:91

    CAS  PubMed Central  Google Scholar 

  • Kiba A, Takata O, Ohnishi K, Hikichi Y (2006) Comparative analysis of induction pattern of programmed cell death and defense related responses during hypersensitive cell death and development of bacterial necrotic leaf spots in eggplant. Planta 224:981–994

    CAS  PubMed  Google Scholar 

  • Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep 9:435–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Lee KP, Baruah A, Nater M, Göbel C, Feussner I, Apel K (2009) 1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc Natl Acad Sci USA 106:9920–9924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Meskauskiene R, Zhang S, Lee KP, Lakshmanan AM, Blajecka K, Herrfurth C, Feussner I, Apel K (2012) Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24:3026–3039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C (2020) ROS-driven oxidative modification: its impact on chloroplasts-nucleus communication. Front Plant Sci 10:1729

    PubMed  PubMed Central  Google Scholar 

  • Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y (2007) Oxidation of elongation factor G inhibits the synthesisof the D1 protein of photosystem II. Molec Microbiol 65:936–947

    CAS  Google Scholar 

  • Kong QM, Lin CLG (2010) Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci 67:1817–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovylinska A, Reiter RJ, Posmyk MM (2017) Melatonin protects cultured tobacco cells against lead-induced cell death via inhibition of cytochrome-c translocation. Front Plant Sci 8:1560

    Google Scholar 

  • Kruk J, Holländer-Czytko H, Oettmeier W, Trebst A (2005) Tocopherol as singlet oxygen scavenger in photosystem II. J Plant Physiol 162:749–757

    CAS  PubMed  Google Scholar 

  • Kumar JSP, Prasad SR, Banerjee R, Thammineni Ch (2015) Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot 116:663–668

    CAS  Google Scholar 

  • Kutscher LK, Shaham S (2017) Non-apoptotic cell death in animal development. Cell Death Differ 24:1326–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laloi C, Havaux M (2015) Key players of singlet oxygen-induced cell death in plants. Front Plant Sci 6:39

    PubMed  PubMed Central  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    CAS  PubMed  Google Scholar 

  • Latrasse D, Benhamed M, Bergounioux C, Raynaud C, Delarue M (2016) Plant programmed cell death from a chromatin point of view. J Exp Bot 67:5887–5900

    CAS  PubMed  Google Scholar 

  • Ledford HK, Chin BL, Niyogi KK (2007) Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 6:919–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KP, Kim C, Landgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Nat Acad Sci USA 104:10270–10275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux J-P (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochem 112:54–62

    CAS  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Ann Rev Plant Biol 60:239–260

    CAS  Google Scholar 

  • Li Z, Xing D (2011) Mechanistic study of mitochondria-dependent programmed cell death induced by aluminium phytotoxicity using fluorescence techniques. J Exp Bot 62:331–343

    CAS  PubMed  Google Scholar 

  • Li Z, Ding B, Zhou X, Wang G-L (2017) The rice dynamin-related protein OsDRP1E negatively regulates programmed cell death by controlling the release of cytochrome c from mitochondria. PLOS Pathog 13:e1006157

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Dogra V, Lee KP, Li R, Li M, Mengping Li M, Kim Ch (2020) N-Terminal acetylation stabilizes SIGMA FACTOR BINDING PROTEIN1 involved in salicylic acid-primed cell death. Plant Physiol 183:358–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liebers M, Grübler B, Chevalier F, Lerbs-Mache S, Merendino L, Blanvillain R, Pfannschmidt T (2017) Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. Front Plant Sci 8:23

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Shi X, Li S, Zhang L, Song X (2018) Programmed cell death are associated with pollen abortion in isonuclear alloplasmic male-sterile wheat. Front Plant Sci 9:595

    PubMed  PubMed Central  Google Scholar 

  • Locato V, De Gara L (2018). Programmed Cell Death in Plants: An Overview. De Gara L, Locato V, eds. Plant Programmed Cell Death: Methods and Protocols, Methods in Molecular Biology, vol. 1743, Springer Science+Business Media, LLC 2018. https://doi.org/10.1007/978-1-4939-7668-3_1

  • Lord C, Dauphinee A, Watts R, Gunawardena A (2013) Unveiling interactions among mitochondria, caspase-like proteases, and the actin cytoskeleton during plant programmed cell death (PCD). PLoS ONE 8:e57110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo DP, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu YG (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nature Genet 45:573–577

    CAS  PubMed  Google Scholar 

  • Lv F, Zhou J, Zeng L, Xing D (2015) Beta-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. J Exp Bot 66:4719–4732

    CAS  PubMed  Google Scholar 

  • Lv F, Li Z, Li M, Dogra V, Lv S, Liu R, Lee KP, Kim C (2019) Uncoupled expression of nuclear and plastid photosynthesis-associated genes contributes to cell death in a lesion mimic mutant. Plant Cell 31:210–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoë A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C (2014) Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26:373–390

    PubMed  PubMed Central  Google Scholar 

  • Mano J (2012) Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem 59:90–97

    CAS  PubMed  Google Scholar 

  • Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, de la Rosa MA (2013) New Arabidopsis thaliana cytochrome-c partners: a look into the elusive role of cytochrome-c in programmed cell death in plants. Mol Cell Proteomics 12:3666–3676

    PubMed  PubMed Central  Google Scholar 

  • Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Díaz-Quintana A, de la Rosa MA (2014) A common signalosome for programmed cell death in humans and plants. Cell Death Dis 5:e1314

    PubMed  PubMed Central  Google Scholar 

  • Matilla-Vázquez MA, Matilla AJ (2014) Role of H2O2 as signaling molecule in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science+Business Media, LLC 2012. https://doi.org/10.1007/978-1-4614-0815-416

  • Matilla MA (2018) Metabolic responses of plants upon different plant-pathogen interactions. In: Ahmad P, Singh VP (eds) Plant metabolites and regulation under environmental stress. Elsevier, Academic Press. NY. https://doi.org/10.1016/B9780128126899.000108

  • Matilla MA, Krell T (2018) Plant growth promotion and biocontrol mediated by plant-associated bacteria. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Springer, NY. https://doi.org/10.1007/978-981-10-5514-03

  • Matilla MA (2019). Programmed cell death in seeds: an adaptive mechanism required for life. https://doi.org/10.5772/intechopen.86833

    Article  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Galili G (2014) Degradation of organelles or specific organelle components via selective autophagy in plant cells. Int J Mol Sci 15:7624–7638

    PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Galili G, Genschick P, Fernie AR (2015) Autophagy in plants: what’s new on the menu. Trends Plant Sci 21:134–144

    PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Mishra S, Tyagi A, Dwivedi SP (2011) Regulation of apoptosis in living organisms: A biotechnological approach. Biotechnol Bioinf Bioeng 1:1–18

    Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trend Plant Sci 16:300–309

    CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling -specificity is required. Trends Plant Sci 15:370–374

    PubMed  Google Scholar 

  • Murata N, Nishiyama Y (2018) ATP is a driving force in the repair of photosystem II during photoinhibition. Plant Cell Environ 41:285–299

    CAS  PubMed  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot J-P (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    CAS  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    CAS  PubMed  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    CAS  PubMed  Google Scholar 

  • Olvera-Carrillo Y, Van Bel M, van Hautegem T, Fendrych M, Huysmans M, Simaskova M, van Durme M, Buscaill P, Rivas S, Coll NS, Coppens F, Maere S, Nowack MK (2015) A Conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plant. Plant Physiol 169:2684–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  • op den Camp RGL, Przybyla D, Ochsenbein Ch, Laloi Ch, Kim Ch, Antoine Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLOS Gen 10:e1004664

    Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    PubMed  PubMed Central  Google Scholar 

  • Pospíšil P (2016) Production of reactive oxygen species by Photosystem II as a response to light and temperature stress. Front Plant Sci 7:1950

    PubMed  PubMed Central  Google Scholar 

  • Przybyla D, Göbel C, Imboden A, Hamberg M, Feussner I, Appel K (2008) Enzymatic, but not non-enzymatic, 1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. Plant J 54:236–248

    CAS  PubMed  Google Scholar 

  • Pu X, Lv X, Tan T, Fu F, Qin G, Lin H (2015) Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. Ann Bot 116:583–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puthiyaveetil S, Tsabari O, Lowry T, Lenhert S, Lewis RR, Reich Z, Kirchhoff H (2014) Compartmentalization of the protein repair machinery in photosynthetic membranes. Proc Nat Acad Sci USA 111:15839–15844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Wang J, Gong Z, Zhou JM (2017) Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol 38:92–100

    CAS  PubMed  Google Scholar 

  • Qi YH, Mao FF, Zhou ZQ, Liu DCh, Yu M, Deng XY, Li JW, Mei FZ (2018a) The release of cytochrome-c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma. https://doi.org/10.1007/s00709-018-1256-7

  • Qi J, Song CP, Wang B, Zhou J, Kangasjarvi J, Zhu JK, Gong Z (2018) Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Int Plant Biol 60:805–826

    CAS  Google Scholar 

  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Nat Acad Sci USA 109:5535–5540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Ksas B, Akkari E, Mialoundama AS, Monnet F, Krieger-Liszkay A, Luc Ravanat JL, Mueller MJ, Bouvier F, Havaux M (2013) Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25:1445–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Ksas B, Havaux M (2013) Jasmonate: a decision maker betweencell death and acclimation in the response of plants to singlet oxygen. Plant Signal Behav 8:e26655

    PubMed  PubMed Central  Google Scholar 

  • Rantong G, Gunawardena AN (2015) Programmed cell death: genes involved in signaling, regulation, and execution in plants and animals. Botany 93:193–210

    CAS  Google Scholar 

  • Reape T, Brogan, NP, McCabe PF (2015) Mitochondrion and chloroplast regulation of plant programmed cell death. In: Gunawardena A, McCabe P (eds) Plant programmed cell death. Springer, Cham. https://doi.org/10.1007/978-3-319-21033-9_2

  • Senatore A, Trobacher CP, Greenwood JS (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol 149:775–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao N, Duan GY, Bock R (2013) A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells. Plant Cell 25:4209–4226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao S, Cardona T, Nixon PJ (2018) Early emergence of the FtsH proteases involved in photosystem II repair. Photosinthetica 56:163–177

    CAS  Google Scholar 

  • Shumbe L, Bott R, Havaux M (2014) Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Mol Plant 7:1248–1251

    CAS  PubMed  Google Scholar 

  • Shumbe L, Chevalier A, Legeret B, Taconnat L, Monnet F, Havaux M (2016) Singlet oxygen-induced cell death in Arabidopsis under high-light stress is controlled by OXI1 kinase. Plant Physiol 170:1757–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shumbe L, D’Alessandro S, Shao N, Chevalier A, Ksas B, Bock R, Havaux M (2017) METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant Cell Environ 40:216–226

    CAS  PubMed  Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    CAS  PubMed  Google Scholar 

  • Su T (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J Integr Plant Biol 60:591–607

    CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    CAS  PubMed  Google Scholar 

  • Suzuki N, Katano K (2018) Coordination between ROS regulatory systems and other pathways under heat stress and pathogen attack. Front Plant Sci 9:490

    PubMed  PubMed Central  Google Scholar 

  • Tanaka R, Kobayashi K, Masuda T (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0145

    PubMed  PubMed Central  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    PubMed  Google Scholar 

  • Tian X, Li S, Zeng Q, Huang W, Liu X, Song S (2019) Relationship between loss of desiccation tolerance and programmed cell death (PCD) in mung bean (Vigna radiata) seeds. PLoS ONE 14:e0218513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genet 37:1130–1134

    CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    PubMed  PubMed Central  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    PubMed  Google Scholar 

  • Unal D, García-Caparrós P, Kumar V, Dietz K-J (2020) Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling. Phylos Trans R Soc B 375:20190443

    CAS  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco BY-2 cells in route to heat shock-induced cell death. Plant Physiol 141:208–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LAJ, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering EJ, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    PubMed  PubMed Central  Google Scholar 

  • Vianello A, Zancani A, Peresson C, Petrussa E, Casolo V, Krajnakova J, Patui S, Braidot E, Macri F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252

    CAS  Google Scholar 

  • Wagner D, Przybyla D (2004) The genetic basis of singlet oxygen–induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    CAS  PubMed  Google Scholar 

  • Wagner R, Aigner H, Funk C (2012) FtsH proteases located in the plant chloroplast. Physiol Plant 145:203–214

    CAS  PubMed  Google Scholar 

  • Wang H, Zhu X, Li H, Cui J, Liu C, Chen X, Zhang W (2014) Induction of caspase-3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin–proteasome system. Sci Rep 4:5989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kim C, Xu X, Piskurewicz U, Dogra V, Singh S, Mahler H, Apel K (2016) Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci USA 113:E3792–E3800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang Y, Song Q, Fang Z, Chen Z, Zhang Y, Zhang L, Zhang L, Niu N, Ma S, Wang J, Yao Y, Hu Z, Zhang G (2017) Mitochondrial dysfunction causes oxidative stress and tapetal apoptosis in chemical hybridization reagent-induced male sterility in wheat. Front Plant Sci 8:2217

    PubMed  Google Scholar 

  • Wang L, Apel K (2019) Dose-dependent effects of 1O2 in chloroplasts are determined by its timing and localization of production. J Exp Bot 70:29–40

    CAS  PubMed  Google Scholar 

  • Wang J, Huang R (2019) Modulation of ethylene and ascorbic acid on ROS scavenging in plant salt responses. Front Plant Sci 10:319

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Leister D, Guan L, Zheng Y, Schneider K, Lehmann M, Apel K, Kleine T (2020) The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc Natl Acad Sci USA 117:6918–6927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watabe N, Ishida Y, Ochiai A, Tokuoka Y, Kawashima N (2007) Oxidation decomposition of unsaturated fatty acids by singlet oxygen in phospholipid bilayer membranes. J Oleo Sci 56:73–80

    CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2009) Programmed cell death in plants: apoptotic but not quite. In: Dong Z, Yin XM (eds) Essentials of apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_13

  • Welchen E, Gonzalez DH (2016) Cytochrome-c, a hub linking energy, redox, stress and signaling pathways in mitochondria and other cell compartments. Physiol Plant 157:310–321

    CAS  PubMed  Google Scholar 

  • Woodson JD (2016) Chloroplast quality control–balancing energy production and stress. New Phytol 212:36–41

    CAS  PubMed  Google Scholar 

  • Wrzaczek M, Brosché M, Kangasjärvi J (2013) ROS signaling loops: production, perception, regulation. Curr Opin Plant Biol 16:575–582

    CAS  PubMed  Google Scholar 

  • Wu MZ, Huang JJ, Xu S, Ling TF, Xie YJ, Shen WB (2011) Heme oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J Exp Bot 62:235–248

    CAS  PubMed  Google Scholar 

  • Wu L, Chen H, Curtis C, Fu ZQ (2014) Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence 5:710–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    CAS  PubMed  Google Scholar 

  • Xie YD, Li W, Guo D, Dong J, Zhang Q, Fu Y, Ren D, Peng M, Xia Y (2010) The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. Plant Cell Environ 33:828–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant J 30:567–579

    CAS  PubMed  Google Scholar 

  • Yu XH, Perdue TD, Heimer YM, Jones AM (2002) Mitochondrial involvement in tracheary element programmed cell death. Cell Death Differ 9:189–198

    CAS  PubMed  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49:1092–1111

    CAS  PubMed  Google Scholar 

  • Zhang S, Apel K, Kin Ch (2014) Singlet oxygen-mediated and EXECUTER-dependent signalling and acclimation of Arabidopsis thaliana exposed to light stress. Phil Trans R Soc B 369:20130227

    PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Zhang H, Deng X, Liu J, Chen H (2017) The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells. Sci Rep 7:4124

    Google Scholar 

Download references

Acknowledgements

I apologize to the authors whose work was not cited, because of space limitations. I thank anonymous reviewers for helpful comments on the paper.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel J. Matilla.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matilla, A.J. Cellular oxidative stress in programmed cell death: focusing on chloroplastic 1O2 and mitochondrial cytochrome-c release. J Plant Res 134, 179–194 (2021). https://doi.org/10.1007/s10265-021-01259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01259-7

Keywords

Navigation