Skip to main content
Log in

Temporal dynamics and vertical variations in stem CO2 efflux of Styphnolobium japonicum

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

CO2 efflux (ECO2) from stems and branches is highly variable within trees. To investigate the mechanisms underlying the temporal dynamics and vertical variations in ECO2, we measured the stem ECO2 by infrared gas analysis (IRGA) and meteorological conditions at 10 different heights from 0.1 to 3.7 m aboveground on two consecutive days every month for 1 year in six Styphnolobium japonicum trees with a similar size. The results indicated that the seasonal change in ECO2 roughly followed the seasonal variations in woody tissue temperature (TW) and stem radial diameter increment (Di). Together, TW and Di explained the monthly change in ECO2, and the contributions of TW and Di changed with the stem positions and growth stages. The diurnal patterns of ECO2 differed greatly between the growing and dormant season, showing a bimodal distribution with an obvious midday depression in the former and a unimodal distribution in the latter. The strong vertical variation in the day-time ECO2 of the growing season was mainly caused by the vertical gradients of TW, Di and difference in sapwood volume per unit of the stem surface along the trunk. The temperature-sensitivity coefficient (Q10) was not constant, as assumed in some models, but was instead vertically altered and highly dependent on the measurement temperature. For all stem positions, the highest Q10 value appeared at approximately 5 °C, and both higher and lower temperatures decreased Q10. Our study demonstrated that application of a constant Q10 would cause an estimation error when scaling up chamber-based measurements to annual carbon budgets at the whole-stem level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta M, Pavelka M, Pokorný R, Janouš D, Marek MV (2008) Seasonal variation in CO2 efflux of stems and branches of Norway spruce trees. Ann Bot 101:469–477

    Article  CAS  PubMed  Google Scholar 

  • Araki MG, Utsugi H, KajimotoT, Han Q, Kawasaki T, Chiba Y (2010) Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate of Chamaecyparis obtusa trees. J For Res 15:115–122

    Article  CAS  Google Scholar 

  • Araki MG, KajimotoT, Han Q, Kawasaki T, Utsugi H, Gyokusen K, Chiba Y (2015) Effect of stem radial growth on seasonal and spatial variations in stem CO2 efflux of Chamaecyparis obtusa. Trees Struct Funct 29:499–514

    Article  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Zhang QS, Wiskich JT (2002) Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool. Plant Physiol 128:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito P, Morales D, Wieser G, Jiménez MS (2010) Spatial and seasonal variations in stem CO2 efflux of Pinus canariensis at their upper distribution limit. Trees Struct Funct 24:523–531.

    Article  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG (2006) Wood CO2 efflux in a primary tropical rain forest. Glob Change Biol 12:2442–2458

    Article  Google Scholar 

  • Cernusak LA, Hutley LB, Beringer J, Tapper NJ (2006) Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Environ 29:632–646

    Article  PubMed  Google Scholar 

  • Ceschia É, Damesin C, Lebaube S, Pontailler JY, Dufrêne É (2002) Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci 59:801–812

    Article  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC, Santos J, Crispim BF, Higuchi N, Araújo C, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:72–88

    Article  Google Scholar 

  • Covey-Crump EM, Attwood RG, Atkin OK (2002) Regulation of root respiration in two species of Plantago that differ in relative growth rate: the effect of short- and long-term changes in temperature. Plant Cell Environ 25:1501–1513

    Article  Google Scholar 

  • CurielYuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob Change Biol 10:81–94

    Google Scholar 

  • Damesin C, Ceschia E, LeGoff N, Ottorini JM, Dufrêne É (2002) Stem and branch respiration of beech: from tree measurements to estimations at the stand level. N Phytol 153:159–172

    Article  Google Scholar 

  • Edwards NT, Hanson PJ (1996) Stem respiration in a closed-canopy upland oak forest. Tree Physiol 16:433–439

    Article  CAS  PubMed  Google Scholar 

  • Harris NL, Hall CAS, Lugo AE (2008) Estimates of species- and ecosystem-level respiration of woody stems along an elavational gradient in the Luduillo Mountains, Puerto Rico. Ecol Model 216:253–264.

    Article  Google Scholar 

  • Katayama A, Kume T, Komatsu H, Ohashi M, Matsumoto K, Ichihashi R, Kumagai T, Otsuki K (2014) Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest. Tree Physiol 34:503–512

    Article  CAS  PubMed  Google Scholar 

  • Levy PE, Jarvis PG (1998) Stem CO2 fluxes in Two Sahelian Shrub Species (Guiera senegalensis and Combretum micranthum). Funct Ecol 12:107–116

    Article  Google Scholar 

  • Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003) Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow growing plant species. Glob Change Biol 9:895–910

    Article  Google Scholar 

  • Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329:838–840

    Article  CAS  PubMed  Google Scholar 

  • Maier CA, Clinton BD (2006) Relationship between stem CO2 efflux, stem sap velocity and xylem CO2 concentration in young loblolly pine trees. Plant Cell Environ 29:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Maier CA, Albaugh TJ, Allen HL, Dougherty PM (2004) Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: the effect of site resources on the stand carbon balance. Glob Change Biol 10:1335–1350

    Article  Google Scholar 

  • Maunoury F, Berveiller D, Lelarge C, Pontailler JY, Vanbostal L, Damesin C (2007) Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia 151:268–279

    Article  PubMed  Google Scholar 

  • McGuire MA, Cerasoli S, Teskey RO (2007) CO2 fluxes and respiration of branch segments of sycamore (Platanus occidentalis L.) examined at different sap velocities, branch diameters, and temperatures. J Exp Bot 58:2159–2168

    Article  CAS  PubMed  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Paembonan SA, Hagihara A, Hozumi K (1991) Long-term measurement of CO2 release from the above ground parts of a Hinoki Forest tree in relation to air temperature. Tree Physiol 8:399–405

    Article  Google Scholar 

  • Robertson AL, Malhi Y, Farfan-Amezquita F, Aragão LEOC, Silva Espejo JE, Robertson MA (2010) Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Change Biol 16:3193–3204

    Article  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1:157–167

    Article  PubMed  Google Scholar 

  • Ryan MG, Hubbard RM, Clark DA, Sanford RL (1994) Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia 100:213–220

    Article  PubMed  Google Scholar 

  • Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz LH, Cropper WP, Running SW (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140

    Article  PubMed  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Ryan MG, Cavaleri MA, Almeida AC, Penchel R, Senock RS, Stape JL (2009) Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil. Tree Physiol 29:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Saveyn A, Steppe K, Lemeur R (2007) Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure? Ann Bot 99:477–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO (2007) Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. Funct Plant Biol 34:785–792

    Article  CAS  Google Scholar 

  • Stitt M, Hurry VM (2002) A plant for all seasons: alteration in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Stockfors J (2000) Temperature variations and distribution of living cells within tree stems: implications for stem respiration modelling and scale-up. Tree Physiol 20:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Stockfors J, Linder S (1998) Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiol 18:155–166

    Article  PubMed  Google Scholar 

  • Tarvainen L, Räntfors M, Wallin G (2014) Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiol 34:488–502

    Article  CAS  PubMed  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. N Phytol 177:17–32

    CAS  Google Scholar 

  • Thorley JHM, Cannell MGR (2000) Modelling the components of plant respiration: representation and realism. Ann Bot 85:55–67

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Change Biol 7:223–230

    Article  Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Griffin KL (2001) Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability. Tree Physiol 21:571–578

    Article  CAS  PubMed  Google Scholar 

  • Valentini R, De Angelis P, Matteucci G, Monaco R, Dore S, Scarascia Mugnozza GE (1996) Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Glob Change Biol 2:199–207

    Article  Google Scholar 

  • Vose JM, Ryan MG (2002) Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Glob Change Biol 8:182–193

    Article  Google Scholar 

  • Wieser G, Bahn M (2004) Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the central Austrian Alps. Trees Struct Funct 18:576–580

    Article  Google Scholar 

  • Xu M, DeBiase TA, Qi Y (2000) A simple technique to measure stem respiration using a horizontally oriented soil chamber. Can J For Res 30: 1555–1560

    Article  Google Scholar 

  • Xu F, Wang CK, Wang XC (2011) Intra- and inter-specific variations in stem respiration for 14 temperate tree species in northeastern China. Acta Ecol Sin 31: 3581–3589

    Article  Google Scholar 

  • Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2012) Temporal and spatial variations of stem CO2 efflux of three species in subtropical China. J Plant Ecol 5: 229–237

    Article  Google Scholar 

  • Yang Y, Zhao M, Xu X, Sun Z, Yin G, Piao S (2014) Diurnal and seasonal change in stem respiration of Larix principis-rupprechtii trees, northern China. Plos One 9: e89294

    Article  PubMed  PubMed Central  Google Scholar 

  • Zha T, Kellomäki S, Wang KY, Ryyppö A, Niinistö S (2004) Seasonal and annual stem respiration of Scots pine trees under boreal conditions. Ann Bot 94: 889–896

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (41171442, 41571482), the State Key Laboratory of Urban and Regional Ecology (SKLURE 2013-1-01) and the programs of the Chinese Academy of Sciences during the 13th Five-Year Plan Period (YSW2013B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Wang, X., Zhou, H. et al. Temporal dynamics and vertical variations in stem CO2 efflux of Styphnolobium japonicum . J Plant Res 130, 845–858 (2017). https://doi.org/10.1007/s10265-017-0951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-017-0951-3

Keywords

Navigation