Skip to main content
Log in

Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Since its establishment, a hybrid origin for Semiliquidambar has been proposed based on morphological intermediacy and sympatric distribution with Altingia and Liquidambar. This hypothesis, however, has lacked convincing molecular evidence. In this study, two nuclear genes, pin2 and cab4, and a chloroplast gene, matK, from Semiliquidambar cathayensis and its putative parental species Liquidambar and Altingia in Jianfengling, Hainan, and Heishiding and Nanling, Guangdong, China, were sequenced to test this hypothesis. Our results showed that L. formosana and L. acalycina were closely related and constituted an inseparable clade in the phylogenetic trees of both pin2 and cab4 genes. Phylogenetic analyses revealed two types of sequences for S. cathayensis, which were clustered with its putative parents, L. formosanaL. acalycina and A. obovata in Jianfengling, and with L. formosana–L. acalycina and A. chinensis in Heishiding and Nanling. The partial chloroplast matK gene sequences showed four nucleotide substitutions between L. formosana and A. obovata in Jianfengling; the sequences of the two individuals of S. cathayensis were identical with those of A. obovata. No diagnostic chloroplast markers including matK and three other chloroplast genes were found to distinguish L. formosana and A. chinensis in Heishiding and Nanling. Molecular data clearly demonstrated that S. cathayensis is of intergeneric hybrid origin between L. formosanaL. acalycina and A. obovata or A. chinensis and that A. obovata functions as the maternal parent in the hybridization event in Jianfengling, Hainan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Bentham G, Hooker JD (1865) Genera Plantarum, vol 1. Reeve, London

    Google Scholar 

  • Blume CL (1828) Flora Javae. Brussels, Belgium

  • Bogle AL (1986) The flora morphology and vascular anatomy of the Hamamelidaceae: subfamily Liquidambaroideae. Ann Mo Bot Gard 73:325–347

    Article  Google Scholar 

  • Chang HT (1962) Semiliquidambar, novum Hamamelidacearum genus Sinicum. Sunyatsen Univ Bull Nat Sci 1:35–44

    Google Scholar 

  • Chang HT (1979) Hamamelidaceae. In: Chang HT (ed) Flora Reipublicae Popularis Sinicae, vol 35/1. Science, Beijing, pp 36–116

    Google Scholar 

  • Chen SH, Liu XW, Du Q (2002) Study on tissue culture of Altingia chingii. J Chin Med Mater 25:82–83

    Google Scholar 

  • Chun WY (1965) Hamamelidaceae. In: Chun WY (ed) Flora of Hainanica, vol 2. Science, Beijing, pp 333–334

    Google Scholar 

  • de Candolle A (1830) Prodromus systematis naturalis regni vegetabilis. Treuttel et Würtz, Paris

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ferguson DK (1989) A survey of the Liquidambaroideae (Hamamelidaceae) with a view to elucidating its fossil record. In: Crane PR, Black S (eds) Evolution, systematics, and fossil history of the Hamamelidae, vol 1. Systematics Association Special Volume No 40A. Clarendon, Oxford, UK, pp 249–272

  • Ferguson D, Sang T (2001) Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proc Natl Acad Sci USA 98:3915–3919

    Article  CAS  PubMed  Google Scholar 

  • Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Pro Natl Acad Sci USA 99:11256–11259

    Article  CAS  Google Scholar 

  • He ZY, Li LG, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267

    Article  CAS  PubMed  Google Scholar 

  • Ickert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Mol Phylogenet Evol 39:512–528

    Article  CAS  PubMed  Google Scholar 

  • Ickert-Bond SM, Pigg KB, Wen J (2005) Comparative infructescence morphology in Liquidambar (Altingiaceae) and its evolutionary significance. Am J Bot 92:1234–1255

    Article  Google Scholar 

  • Ickert-Bond SM, Pigg KB, Wen J (2007) Comparative infructescence morphology in Altingia (Altingiaceae) and discordance between morphological and molecular phylogenies. Am J Bot 94:1094–1115

    Article  CAS  Google Scholar 

  • Kamiya K, Moritsuka E, Yoshida T, Yahara T, Tachida H (2008) High population differentiation and unusual haplotype structure in a shade-intolerant pioneer tree species, Zanthoxylum ailanthoides (Rutaceae) revealed by analysis of DNA polymorphism at four nuclear loci. Mol Ecol 17:2329–2338

    Article  CAS  PubMed  Google Scholar 

  • Leroy JF (1982) Origine et evolution du genre Platanus (Platanaceae). Compt Rend Hebd Séances Acad Sci Sér 295:251–254

    Google Scholar 

  • Lindley J (1836) A natural system of botany. Longman, London

    Google Scholar 

  • Liu JQ, Chen ZD, Lu AM (2002) Molecular evidence for the sister relationship of the eastern Asia-North American intercontinental species pair in the Podophyllum group (Berberidaceae). Bot Bull Acad Sin 43:147–154

    CAS  Google Scholar 

  • Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  PubMed  Google Scholar 

  • Morrell P, Rieseberg LH (1998) Molecular tests of the proposed diploid hybrid origin of Gilia achilleifolia (Polemoniaceae). Am J Bot 85:1439–1453

    Article  Google Scholar 

  • Oken L (1841) Allgemeine Naturgeschichte für alle Stānde 3(3):1539. Hovman’sche, Stuttgart

    Google Scholar 

  • Pan J, Zhang D, Sang T (2007) Molecular phylogenetic evidence for the origin of a diploid hybrid of Paeonia (Paeoniaceae). Am J Bot 94:400–408

    Article  CAS  Google Scholar 

  • Park KR, Pak JH, Seo BB (2003) Allozyme variation in Paraixeris: a test for the diploid hybrid origin of Paraixeris koidzumiana (Compositae). Bot Bull Acad Sin 44:13–122

    Google Scholar 

  • Qiu S, Zhou RC, Li YQ, Havanond S, Jaengjai C, Shi SH (2008) Molecular evidence for natural hybridization between Sonneratia alba and S. griffithii. J Syst Evol 46:391–395

    Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37:121–147

    Article  CAS  PubMed  Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF, Silva OM (1995) ITS sequences and the phylogeny of the genus Robinsonia (Asteraceae). Syst Bot 20:55–64

    Article  Google Scholar 

  • Schmitt D, Perry TO (1964) Self-sterility in sweetgum. Forest Sci 10:302–305

    Google Scholar 

  • Shi S, Huang Y, Zhong Y, Du Y, Chang H, Boufford DE (2001) Phylogeny of the Altingiaceae based on cpDNA matK, PY-IGS and nrDNA ITS sequences. Plant Syst Evol 230:13–24

    Article  CAS  Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Genet 76:449–462

    Article  CAS  PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1998) PAUP. Phylogenetic analysis using parsimony (*and Other Methods), ver 4. Sinauer, Sunderland, MA

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wu CA, Campbell DR (2005) Cytoplasmic and nuclear markers reveal contrasting patterns of spatial genetic structure in a natural Ipomopsis hybrid zone. Mol Ecol 14:781–792

    Article  CAS  PubMed  Google Scholar 

  • Xiang LL, Werth CR, Emery SN, McCauley DE (2000) Population-specific gender-biased hybridization between Dryopteris intermedia and D. carthusiana: evidence from chloroplast DNA. Am J Bot 87:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hanley S, Goodman HM (1991) Isolation, characterization, and chromosomal location of a new cab gene from Arabidopsis thaliana. Plant Physiol 96:1387–1388

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Zeng K, Wu W, Chen X, Yang Z, Shi S, Wu CI (2007) Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol Biol Evol 24:2746–2754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Huangqiang Chen and Judy Chen for helping collect samples. We are grateful to the two anonymous reviewers for their valuable comments. The work was supported by National Natural Science Foundation of China ( 30730008, 30800060, 40976081, 40876075), National Basic Research Program of China (2007CB815701), the Ministry of Education Foundation of China (20070558030), the Natural Science Foundation of Guangdong Province (8451027501001492, 8151027501000089), and the Chang Hungta Science Foundation of Sun Yat-Sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2009_275_MOESM1_ESM.pdf

Table S1. Fixed sites of pin2 gene between species of Altingia and Liquidambar among populations of Jiangfengling, Heishiding and Nanling. Table S2. Fixed sites of cab4 gene between species of Altingia and Liquidambar among populations of Hainan. Table S3. Pairwise maximum composite likelihood distances between five species of Atlingiaceae based on the pin2 and cab4 genes (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Zhou, R., Huang, Y. et al. Molecular evidence for natural intergeneric hybridization between Liquidambar and Altingia . J Plant Res 123, 231–239 (2010). https://doi.org/10.1007/s10265-009-0275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0275-z

Keywords

Navigation