Skip to main content
Log in

Embryology of Petrosavia (Petrosaviaceae, Petrosaviales): evidence for the distinctness of the family from other monocots

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The affinities of Petrosavia, a rare, leafless, mycoheterotrophic genus composed of two species indigenous to East to Southeast Asia, have long been uncertain. However, recent molecular analyses show that the genus is sister to Japonolirion osense. Japonolirion and Petrosavia comprise the Petrosaviaceae, which are now placed in its own order, Petrosaviales, distinct from other monocots based on molecular analyses. We conducted an embryological study of Petrosavia, comparing it to Japonolirion, as well as to basal monocots (Acorus and Araceae) and more derived monocots (Nartheciaceae, Velloziaceae, and Triuridaceae). Our results showed that Petrosavia is very similar in embryology to Japonolirion, with both genera sharing a glandular anther tapetum, simultaneous cytokinesis in microspore mother cells, anatropous and crassinucellate ovules, T-shaped tetrads of megaspores, ab initio Cellular-type endosperm, and a mature seed coat composed of the exotesta, endotesta, and endotegmen. The two genera of Petrosaviaceae are clearly distinct from Acorus, and all Araceae, Nartheciaceae, Velloziaceae, and Triuridaceae genera in various combinations of characters. Thus, both molecular and embryological evidence support the distinctness of the Petrosaviaceae from other monocots and its placement in its own order, Petrosaviales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barabé D, Lacroix C, Bruneau A, Archambault A, Gibernau M (2004) Floral development and phylogenetic position of Schismatoglottis (Araceae). Int J Plant Sci 165:173–189

    Article  Google Scholar 

  • Biddle JA (1979) Anther and pollen development in garden pea and cultivated lentil. Can J Bot 57:1883–1900

    Article  Google Scholar 

  • Browne ET Jr (1961) Morphological studies in Aletris. I. Development of the ovule, megaspores and megagametophyte of A. aurea and their connection with the systematics of the genus. Am J Bot 48:143–147

    Article  Google Scholar 

  • Buell MF (1935) Seed and seedling of Acorus calamus. Bot Gaz 96:758–765

    Article  Google Scholar 

  • Buell MF (1938) Embryogeny of Acorus calamus. Bot Gaz 99:556–568

    Article  Google Scholar 

  • Caddick LR, Rudall PJ, Wilkin P, Chase MW (2000) Yams and their allies: systematics of Dioscoreales. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution, vol 1. CSIRO, Melbourne, pp 475–487

    Google Scholar 

  • Cameron KM, Chase MW, Rudall PJ (2003) Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia 55:214–225

    Article  Google Scholar 

  • Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Givinish TJ, Systma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution, vol 1. CSIRO, Melbourne, pp 3–16

    Google Scholar 

  • Chase MW, Fay MF, Devey DS, Maurin O, Ronsted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75

    Google Scholar 

  • Corner EJH (1976) The seeds of the dicotyledons, vol 2. Oxford, London

    Google Scholar 

  • Davis GL (1966) Systematic embryology of flowering plants. Wiley, New York

    Google Scholar 

  • Duvall MR (2001) An anatomical study of anther development in Acorus L.: phylogenetic implications. Plant Syst Evol 228:143–152

    Article  Google Scholar 

  • Floyd SK, Friedman WE (2000) Evolution of endosperm developmental patterns among basal flowering plants. Int J Plant Sci 161(6 Suppl):S57–S81

    Article  Google Scholar 

  • Furness CA, Rudall PJ (1999) Microsporogenesis in monocotyledons. Ann Bot 84:475–499

    Article  Google Scholar 

  • Fuse S, Tamura MN (2000) A phylogenetic analysis of the plastid matK gene with emphasis on Melanthiaceae sensu lato. Plant Biol 2:415–427

    Article  CAS  Google Scholar 

  • Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ, Millam KC, Meerow AW, Molvray M, Kores PJ, O’Brien HE, Hall JC, Kress WJ, Sytsma KJ (2006) Phylogenetic relationships of monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. In: Columbus JT et al (eds) Monocots: comparative biology and evolution (excluding Poales). Rancho Santa Ana Botanical Garden, Claremont, pp 28–51 [Aliso 22: 28–51]

    Google Scholar 

  • Gow JE (1907) Morphology of Spathyeme foetida. Bot Gaz 43:131–136

    Article  Google Scholar 

  • Graham SW, Zgurski JM, McPherson MA, Cherniawsky DM, Saarela JM, Horne EFC, Smith SY, Wong WA, O’Brien HE, Biron VL, Pires JC, Olmstead RG, Chase MW, Rai HS (2006) Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In: Columbus JT et al (eds) Monocots: comparative biology and evolution (excluding Poales). Rancho Santa Ana Botanical Garden, Claremont, pp 3–21 [Aliso 22: 3–21]

    Google Scholar 

  • Groom P (1892) On the embryo of Petrosavia, Beccari. Ann Bot (London) 6:380–382

    Google Scholar 

  • Groom P (1895) On a new saprophytic monocotyledon. Ann Bot (London) 9:45–58

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 2. Springer, Berlin

    Google Scholar 

  • Jüssen FJ (1929) Die Haploidgeneration der Araceen und ihre Verwertung für das System. Bot Jahrb Syst 62:155–283

    Google Scholar 

  • Rosendahl CO (1909) Embryo-sac development and embryology of Symplocarpus foetidus. Minnesota Bot Stud IV Bot Ser 7(4):1–9

    Google Scholar 

  • Rübsamen-Weustenfeld T (1991) Morphologische, embryologische und systematische Untersuchungen an Triuridaceae. Biblio Bot 140:1–113

    Google Scholar 

  • Rudall PJ, Furness CA (1997) Systematics of Acorus: ovule and anther. Int J Plant Sci 158:640–651

    Article  Google Scholar 

  • Sato Y, Kirito E (1988) Formation of embryo-sac and callose deposition during its development in Aletris luteoviridis. Sci Rep Yokohama Natl Univ (Sect II) 35:47–56

    Google Scholar 

  • Schmid R (1986) On cornerian and other terminology of angiospermous and gymnospermous seed coats: historical perspective and terminological recommendations. Taxon 35:476–491

    Article  Google Scholar 

  • Seubert E (1993) Die Samen der Araceen. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  • Soltis DE, Mort ME, Soltis PS, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Price LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Google Scholar 

  • Stenar H (1931) Die Art der Pollenbildung bei Narthecium ossifragum Huds. Bot Notiser 1931:51–54

    Google Scholar 

  • Sterling C (1978) Comparative morphology of the carpel in the Liliaceae: Hewardieae, Petrosavieae, and Tricyrteae. Bot J Linn Soc 77:95–106

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website, version 9. Website http://www.mobot.org/MOBOT/research/APweb/. Accessed 29 July 2009

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Tam S-M, Boyce PC, Upson TM, Barabé D, Bruneau A, Forest F, Parker JS (2004) Intergeneric and infrafamilial phylogeny of subfamily Monsteroideae (Araceae) revealed by chloroplast trnL-F sequences. Am J Bot 9:490–498

    Article  Google Scholar 

  • Tamura MN, Yamashita J, Fuse S, Haraguchi M (2004) Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL sequences. J Plant Res 117:109–120

    Article  CAS  PubMed  Google Scholar 

  • Tobe H (1989) The embryology of angiosperms: its broad application to the systematic and evolutionary study. Bot Mag (Tokyo) 102:351–367

    Article  Google Scholar 

  • Tobe H (2008) Embryology of Japonolirion (Petrosaviaceae, Petrosaviales): a comparison with other monocots. J Plant Res 121:407–416

    Article  PubMed  Google Scholar 

  • Tobe H, Kadokawa T (2008) Embryology of the Araceae: variation and character evolution. Makinoa N S 7:29–53

    Google Scholar 

  • Tobe H, Raven PH (1984) The number of cells in the pollen of Melastomataceae (Myrtales). Bot Mag (Tokyo) 97:131–136

    Article  Google Scholar 

  • Varitchak B (1940) Le développement du sac embryonnaíre et le nombre de chromosomes chez la plante Narthecium scadicum Kosanin. Bull Acad Sci (Beograd) Ser B 6:97–105

    Google Scholar 

  • Vázquez-Santana S, Engelman EM, Martínez-Mena A, Márquez-Guzmán J (1998) Ovule and seed development of Lacandonia schismatica (Lacandoniaceae). Am J Bot 85:299–304

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 21510240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Tobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobe, H., Takahashi, H. Embryology of Petrosavia (Petrosaviaceae, Petrosaviales): evidence for the distinctness of the family from other monocots. J Plant Res 122, 597–610 (2009). https://doi.org/10.1007/s10265-009-0259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0259-z

Keywords

Navigation