Skip to main content
Log in

Pollen-tube growth pattern and chalazogamy in Casuarina equisetifolia (Casuarinaceae)

  • Original Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

For a better understanding of pollen-tube guidance in relation to pollen-pistil interaction, we investigated the mode of pollen-tube growth in pistils of Casuarina equisetifolia, a monoecious, wind-pollinated species that undergoes chalazogamous fertilization. The pistil is bicarpellate, but only one of the two carpels develops with two ovules. One of these ovules develops more than four embryo sacs. Pistils usually require more than 1 month to reach maturity after pollen grains have been deposited on the stigmas. During that period, pollen-tube growth proceeds discontinuously in five distinct steps that lead up to fertilization: (1) from the stigma to the upper region of the style, (2) from the upper region of the style to a septum in the ovary, (3) from the septum to the surface of the funiculus, (4) from the funiculus to chalaza in the ovule, and (5) from the chalaza to an egg apparatus. Probably because of competitive interaction between male and female gametophytes (or ovules), one pollen tube is selected from among many during the first step (just before the second step), one ovule from the two during the second and third steps, and one embryo sac from more than four during the fourth and fifth steps. On the basis of our results, erroneous drawings and explanations reported in earlier publications on chalazogamy in Casuarinaceae should be brought into question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–F
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barlow BA (1958) Heteroploid twins and apomixis in Casuarina nana. Aust J Bot 6:204-219

    Google Scholar 

  • Benson M (1894) Contribution to the embryology of the Amentiferae.- Part I. Trans Linn Soc London Bot 3:409–424

    Google Scholar 

  • Boavida LC, Varela MC, Feijo JA (1999) Sexual reproduction in the cork oak (Quercus suber L.). I. The progamic phase. Sex Plant Reprod 11:347–353

    Article  Google Scholar 

  • Cecich RA (1997) Pollen tube growth in Quercus. For Sci 43:140–146

    Google Scholar 

  • Coimbra S, Salema R (1999) Ultrastructure of the developing and fertilized embryo sac of Amaranthus hypochondriacus L. Ann Bot 84:781–789

    Article  Google Scholar 

  • Copeland HC (1955) The reproductive structures of Pistacia chinensis (Anacardiaceae). Phytomorphology 6:440–449

    Google Scholar 

  • Dahl ÅE, Fredrikson M (1996) The timetable for development of maternal tissues sets the stage for male genomic selection in Betula pendula (Betulaceae). Am J Bot 83:895–902

    Google Scholar 

  • Derksen J, Rutten T, van Amstel T, De Win A, Doris F, Steer M (1995) Regulation of pollen tube growth. Acta Bot Neerl 44:93–119

    Google Scholar 

  • Faure J-E, Rotman N, Fortuné P, Dumas C (2002) Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J 30:481–488

    Article  PubMed  Google Scholar 

  • Frye TC (1903) The embryo sac of Casuarina stricta. Bot Gaz 36:101–113

    Article  Google Scholar 

  • Gao X, Francis D, Ormrod JC, Bennett MD (1992) An electron microscopic study of double fertilization in allohexaploid wheat Triticum aestivum L. Ann Bot 70:561-568

    Google Scholar 

  • Germain E (1994) The reproduction of hazelnut (Corylus avellana L.): a review. Acta Hortic 351:195–203

    Google Scholar 

  • Grundwag M (1976) Embryology and fruit development of four species of Pistacia L. (Anacardiaceae). Bot J Linn Soc 73:353–370

    Google Scholar 

  • Herr JM (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58:785–790

    Google Scholar 

  • Herrero M, Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Am J Bot 76:1441–1447

    Google Scholar 

  • Higashiyama T (2002) The synergid cell: attractor and acceptor of the pollen tube for double fertilization. J Plant Res 115:149–160

    Article  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2031

    CAS  PubMed  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa. T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  CAS  PubMed  Google Scholar 

  • Huang B-Q, Strout GW, Russell SD (1993) Fertilization in Nicotiana tabacum: ultrastructual organization of propane-jet-frozen embryo sacs in vivo. Planta 191:256–264

    Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    Google Scholar 

  • Johnson LAS, Wilson KL (1989) Casuarinaceae: a synopsis. In: Crane PR, Blackmore S (eds) Evolution, systematics, and fossil history of the Hamamelidae, vol 2. Clarendon Press, Oxford, pp 167–188

  • Johnson LAS, Wilson KL (1993) Casuarinaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The Families and genera of vascular plants, vol 2. Springer, Berlin Heidelberg New York, pp 152–157

  • Johnson MA, Preuss D (2002) Plotting a course: multiple signals guide pollen tubes to their targets. Dev Cell 2:273–281

    PubMed  Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 143–115

  • Karsten G (1902) Über die Entwicklung der weiblichen Blüthen bei einigen Juglandaceen. Flora 90:316–333

    Google Scholar 

  • Kristóf Z, Tímár O, Imre K (1999) Changes of calcium distribution in ovules of Torenia fournieri during pollination and fertilization. Protoplasma 208:149–155

    Google Scholar 

  • Kuroiwa H (1989) Ultrastructual examination of embryogenesis in Crepis capillaris (L.) Wallr.: 1. The synergid before and after pollination. Bot Mag 102:9-24

    Google Scholar 

  • Langdon LM (1934) Embryogeny of Carya and Juglans, a comparative study. Bot Gaz 96:93–117

    Article  Google Scholar 

  • Luza JG, Polito VS (1991) Porogamy and chalazogamy in walnut (Juglans regia L.). Bot Gaz 152:100–106

    Article  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

  • Martin FW (1958) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol 33:125–128

    Google Scholar 

  • Martínez-Pallé E, Herrero M (1998) Pollen tube pathway in chlazogamous Pistacia vera L. Int J Plant Sci 159:566–574

    Article  Google Scholar 

  • Nast CG (1935) Morphological development of the fruit of Juglans regia. Hilgardia 9:345–381

    Google Scholar 

  • Nast CG (1941) The embryology and seedling morphology of Juglans regia L. Lilloa 6:163–205

    Google Scholar 

  • Nawaschin S (1895) Neue Ergebnisse über die Embryologie der Hasel (Corylus Avellana). Bot Centralbl 63:353–357

    Google Scholar 

  • Ray S, Park SS, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498

    CAS  PubMed  Google Scholar 

  • Russell SD (1992) Double fertilization. Int Rev Cytol 140:357–388

    Google Scholar 

  • Russell SD (1996) Attraction and transport of male gametes for fertilization. Sex Plant Reprod 9:337–342

    Article  Google Scholar 

  • Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518

    CAS  PubMed  Google Scholar 

  • Shuraki YD, Sedgley M (1997) Pollen pathway and stimulation of embryo sac development in Pistacia vera (Anacardiaceae). Ann Bot 79:361–369

    Article  Google Scholar 

  • Stairs GR (1964) Microsporogensis and embryogenesis in Quercus. Bot Gaz 125: 115–121

    Article  Google Scholar 

  • Swamy BGL (1948) A contribution to the life history of Casuarina. Proc Am Acad Arts 77:1-32

    Google Scholar 

  • Tian H-Q, Russell SD (1997) Calcium distribution in fertilized and unfertilized ovules and embryo sacs of Nicotiana tabacum L. Planta 202:93–105

    Article  CAS  Google Scholar 

  • Treub M (1891) Sur les Casuarinées et leur place dans le système naturel. Ann Jard Bot Buitenzorg 10:145–231

    Google Scholar 

  • Van Went JL, Willemse MTM (1984) Fertilization. In: Johri BM, (eds) Embryology of angiosperms. Springer, Berlin Heidelberg New York, pp 273–317

  • Ye X-L, Yeung EC, Zee S-Y (2002) Sperm movement during double fertilization of a flowering plant, Phaius tankervilliae. Planta 215:60–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fumiyoshi Ishidate (Carl Zeiss) for technical advice on the multi-photon laser-scanning microscope, and to Hiroaki Setoguchi, Toru Tokuoka, Yukitoshi Kimoto, Jung Sung Kim, Masumi Kono, Tomoki Kadokawa and Kentaro K. Shimizu for their suggestions on completing the manuscript. The study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 14405012) and funds from Suntory Flowers Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Sogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sogo, A., Noguchi, J., Jaffré, T. et al. Pollen-tube growth pattern and chalazogamy in Casuarina equisetifolia (Casuarinaceae). J Plant Res 117, 37–46 (2004). https://doi.org/10.1007/s10265-003-0129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-003-0129-z

Keywords

Navigation