Skip to main content
Log in

On simulation and properties of the stable law

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The stable distribution, in its many parametrizations, is central to many stochastic processes. Many random variables that occur in the study of Lévy processes are related to it. Good progress has been made recently for simulating various quantities related to the stable law. In this note, we survey exact random variate generators for these distributions. Many distributional identities are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhiezer NI (1965) The classical moment problem and some related questions in analysis. Oliver & Boyd, Edinburgh

    MATH  Google Scholar 

  • Anh VV, McVinish R (2004) The Riesz–Bessel fractional diffusion equation. Appl Math Optim 49:241–264

    Article  MATH  MathSciNet  Google Scholar 

  • Anh VV, McVinish R, Pesee C (2005) Estimation and simulation of the Riesz–Bessel distribution. Commun Stat: Theory Methods 34:1881–1897

    Article  MATH  MathSciNet  Google Scholar 

  • Bailey RW (1994) Polar generation of random variates with the \(t\) distribution. Math Comput 62:779–781

    MATH  Google Scholar 

  • Barlow M, Pitman J, Yor M (1989) Une extension multidimensionnelle de la loi de l’arc sinus. In: Seminaire de probabilites, XXIII, vol 1372, lecture notes in mathematics. Springer, Berlin, pp 294–314

  • Bartels R (1981) Truncation bounds for infinite expansions for the stable distributions. J Stat Comput Simul 12:293–302

    Article  MATH  MathSciNet  Google Scholar 

  • Bergström H (1952) On some expansions of stable distributions. Arkiv für Math II 18:375–378

    Article  Google Scholar 

  • Bertoin J, Fujita T, Roynette B, Yor M (2006) On a particular class of self-decomposable random variables: the durations of Bessel excursions straddling independent exponential times. Probab Math Stat 26:315–366

    MATH  MathSciNet  Google Scholar 

  • Box GEP, Müller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29:610–611

    Article  MATH  Google Scholar 

  • Chambers JM, Mallows CL, Stuck BW (1976) A method for simulating stable random variables. Journal of the American Statistical Association 71:340–344

    Article  MATH  MathSciNet  Google Scholar 

  • Chaumont L, Yor M (2003) Exercises in probability. A guided tour from measure theory to random processes, via conditioning. In: Cambridge series in statistics and probability. Cambridge University Press, Cambridge

  • Cheng RCH, Liu WB (1997) A continuous representation of the family of stable law distributions. J Roy Stat Soc B59:137–145

    Google Scholar 

  • Cifarelli DM, Regazzini E (1990) Distribution functions of means of a Dirichlet process. Ann Stat 18:429–442

    Article  MATH  MathSciNet  Google Scholar 

  • Devroye L (1984) Methods for generating random variates with Polga characteristic functions. Stat Probab Lett 2:257–261

    Google Scholar 

  • Devroye L (1986) Non-uniform random variate generation. Springer, New York

    Book  MATH  Google Scholar 

  • Devroye L (1988) Generating sums in constant average time. In: Abrams MA, Haigh PL, Comfort JC (eds) Proceedings of the 1988 winter simulation conference. IEEE, San Diego, CA, pp 425–431

  • Devroye L (1990) A note on Linnik’s distribution. Stat Probab Lett 9:305–306

    Article  MATH  MathSciNet  Google Scholar 

  • Devroye L (1996) Random variate generation in one line of code. In: Charnes JM, Morrice DJ, Brunner DT, Swain JJ (eds) 1996 winter simulation conference proceedings. ACM, San Diego, pp 265–272

  • Devroye L (2006) Non-uniform random variate generation. In: Henderson Shane G, Nelson Barry L (eds) Handbooks in operations research and management volume 13 simulation. North-Holland, Amsterdam, pp 83–121

    Google Scholar 

  • Devroye L (2009) Random variate generation for exponentially and polynomially tilted stable distributions. ACM Trans Model Comput Simul, vol. 19 (article 18). doi:10.1145/1596519

  • Devroye L, James L (2011) The double cftp method. ACM Trans Model Comput Simul 21:1–20

    Article  Google Scholar 

  • Dufresne D (1990) The distribution of a perpetuity, with application to risk theory, and pension funding. Scand Actuar J, pp 39–79

  • Epstein B (1948) Some applications of the Mellin transform in statistics. Ann Math Stat 19:370–379

    Article  MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol 2. Wiley, New York

    MATH  Google Scholar 

  • Flajolet P, Sedgewick B (2009) Analytic combinatorics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Huillet T (2000) On Linnik’s continuous-time random walks. J Phys A 33:2631–2652

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov IA, Chernin KE (1959) On the unimodality of stable laws. Theory Probab Appl 4:417–419

    Article  MATH  Google Scholar 

  • L. F. James and M. Yor, “Tilted stable subordinators, gamma time changes and occupation time of rays by Bessel spiders”, arXiv:math/0701049v1, 2007.

  • James LF (2006a) Gamma tilting calculus for GGC and Dirichlet means with applications to Linnik processes and occupation time laws for randomly skewed Bessel processes and bridges. arXiv:math/0610218v3

  • James LF (2006b) Scale mixture representations of the time spent positive by skewed Bessel bridges. In: Technical Report, Hong Kong University of Science and Technology

  • James LF, Lijoi A, Prünster I (2008) Distributions of functionals of the two parameter Poisson–Dirichlet process. Ann Appl Probab 18:521–551

    Article  MATH  MathSciNet  Google Scholar 

  • James LF (2010b) Lamperti-type laws. Ann Appl Probab 20:1303–1340

    Article  MATH  MathSciNet  Google Scholar 

  • James LF (2010a) Dirichlet mean identities and laws of a class of subordinators. Bernoulli 16:361–388

    Article  MATH  MathSciNet  Google Scholar 

  • Jayakumar K, Pillai RN (1996) Characterization of Mittag-Leffler distribution. Journal of Applied Statistical Sciences 4:77–82

    MATH  MathSciNet  Google Scholar 

  • Jurek ZJ (1999) Self-decomposability, perpetuity laws and stopping times. Probability and Mathematical Statistics 19:413–419

    MATH  MathSciNet  Google Scholar 

  • Kanter M (1975) Stable densities under change of scale and total variation inequalities. Ann Probab 3:697–707

    Article  MATH  MathSciNet  Google Scholar 

  • Kawata T (1972) Fourier analysis in probability theory. Academic Press, New York

    MATH  Google Scholar 

  • Kotlarski I (1965) On pairs of independent random variables whose product follows the gamma distribution. Biometrika 52:289–294

    Article  MATH  MathSciNet  Google Scholar 

  • Lamperti J (1958) An occupation time theorem for a class of stochastic processes. Transactions of the American Mathematical Society 88:380–387

    Article  MATH  MathSciNet  Google Scholar 

  • Lin GD (2001) A note on the characterization of positive Linnik laws. Aust NZ J Stat 43:17–20

    Article  MATH  Google Scholar 

  • Nolan JP (1997) “Numerical calculation of stable densities and distribution functions,” Communications in statistics—Stochastic Models 13:759–774

    Google Scholar 

  • Perman M, Pitman J, Yor M (1992) Size-biased sampling of Poisson point processes and excursions. Probability Theory and Related Fields 92:21–39

    Article  MATH  MathSciNet  Google Scholar 

  • Pitman J (2006) Combinatorial stochastic processes, ecole d’Eté de probabilité de saint-flour II–2002. Lecture notes in mathematics, vol. 1875. Springer, Berlin

  • Samorodnitsky G, Taqqu M (1994) Stable non-Gaussian random processes: stochastic models with infinite variance, Chapman and Hall, CRC Press

  • Sato K-I (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Shohat JA, Tamarkin JD (1943) The problem of moments. In: Mathematical survey no. 1, American Mathematical Society, New York

  • Springer MD (1979) The algebra of random variables. Wiley, New York

    MATH  Google Scholar 

  • Stoyanov J (2000) Krein condition in probabilistic moment problems. Bernoulli 6:939–949

    Article  MATH  MathSciNet  Google Scholar 

  • Titchmarsh EC (1937) Introduction to the theory of fourier integrals. Clarendon Press, Oxford

    Google Scholar 

  • Ulrich G (1984) Computer generation of distributions on the m-sphere. Appl Stat 33:158–163

    Article  MATH  MathSciNet  Google Scholar 

  • Watanabe S (1995) Generalized arc-sine laws for one-dimensional diffusion processes and random walks. In: Stochastic Analysis, Ithaca, NY, 1993, volume 57 of proceedings of the symposium on pure mathematics. American Mathematical Society, Providence, RI, pp 157–172

  • Weron R (1996) On the Chambers–Mallows–Stuck method for simulating skewed stable random variables. Stat Probab Lett 28:165–171

    Article  MATH  MathSciNet  Google Scholar 

  • Weron R (2004) Computationally intensive value at risk calculations. In: Gentle JE, Härdle WH, Mori Y (eds) Handbook of computational statistics. Berlin, pp. 911–950

  • Yano K, Yano Y (2008) Remarks on the density of the law of the occupation time for Bessel bridges and stable excursions. Stat Probab Lett 78:2175–2180

    Article  MATH  Google Scholar 

  • Zolotarev VM (1957) Mellin–Stieltjes transforms in probability theory. Teor. Veroyatnost. i Primenen. 2:444–469

    MathSciNet  Google Scholar 

  • Zolotarev VM (1959) On analytic properties of stable distribution laws. Sel Transl Math Stat Probab 1:207–211

    Google Scholar 

  • Zolotarev VM (1966) On the representation of stable laws by integrals. Sel Transl Math Stat Probab 6:84–88

    Google Scholar 

  • Zolotarev VM (1981) Integral transformations of distributions and estimates of parameters of multidimensional spherically symmetric stable laws. In: Contributions to probability. Academic Press, London, pp 283–305

  • Zolotarev VM (1986) One-dimensional stable distributions. American Mathematical Society, Providence

    MATH  Google Scholar 

Download references

Acknowledgments

We thank the referee for his thorough and helpful report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Devroye.

Additional information

The first author was sponsored by NSERC Grant A3456. The second author was supported by (General Research Fund) GRF-601712 of the Hong Kong SAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devroye, L., James, L. On simulation and properties of the stable law. Stat Methods Appl 23, 307–343 (2014). https://doi.org/10.1007/s10260-014-0260-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-014-0260-0

Keywords

Mathematics Subject Classifications

Navigation