Skip to main content
Log in

Modifid Interpolatory Projection Method for Weakly Singular Integral Equation Eigenvalue Problems

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper deals with eigenvalue problems for linear Fredholm integral equations of the second kind with weakly singular kernels. A new discrete method is proposed for the approximation of eigenvalues. Compactness of the integral operator in L1[0, 1] space is obtained. This method is based on the approximation of the integral operator by modified interpolatory projection. Different from traditional methods, norm convergence of operator approximation is proved theoretically. Further, convergence of eigenvalue approximation is obtained by analytical tools. Numerical examples are presented to illustrate the theoretical results and the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahues, M., Largillier, A., Limaye, B.V. Spectral computations for bounded operators. Chapman and Hall/CRC, New York, 2001

    Book  MATH  Google Scholar 

  2. Alouch, C., Sablonnière, P., Sbibih, D., Tahrichi, M. Superconvergent Nyström and degenerate kernel methods for eigenvalue problems. Appl.Math.Comput., 217(20): 7851–7866 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Anselone, P.M. Collectively compact operator approximation theory and applications to integral equations. Prentice-Hall, Englewood Cliffs, 1971

    MATH  Google Scholar 

  4. Atkinson, K.E. A survey of numerical methods for the solution of fredholm integral equations of the second kind. SIAM, Philadelphia, PA, 1976

    MATH  Google Scholar 

  5. Atkinson, K.E. The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge, 1997

    Book  MATH  Google Scholar 

  6. Bažant, Z., Li, Y. Stability of cohesive crack model: part II—eigenvalue analysis of size effect on strength and ductility of structures. J. Appl. Mech., 62(4): 965–969 (1995)

    Article  MATH  Google Scholar 

  7. Baggeroer, A. A state-variable approach to the solution of Fredholm integral equations. IEEE Trans. Inform. Theory, 15(5): 557–570 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brunner, H., Iserles, A., Norsett, S.P. The spectral problem for a class of highly oscillatory Fredholm integral operators. IMAJ. Numer. Anal., 30(1): 108–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buell, C. Integral equation representation of factor analysis. J. Atmospheric Sci., 28(8): 1502–1505 (1971)

    Article  Google Scholar 

  10. Chatelin, F. Spectral approximation of linear operators. Academic Press, New York, 1983

    MATH  Google Scholar 

  11. Dinapoli, F.R., Middletion, F.H. Surface-wave propagation in a continuously stratified medium. J. Acoust. Soc. Am, 79(5A): 899–903 (1996)

    Article  Google Scholar 

  12. Evans, N., Read, J. Stability of power-law discs-I. The Fredholm integral equation. Mon. Not. R. Astron. Soc., 300(1): 83–105 (1998)

    Article  Google Scholar 

  13. Girolami, M. Orthogonal series density estimation and the kernel eigenvalue problem. Neural Comput., 14(3): 669–688 (2002)

    Article  MATH  Google Scholar 

  14. Gnaneshwar, N. A degenerate kernel method for eigenvalue problems of compact integral operators. Adv. Comput. Math., 27: 339–354 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gnaneshwar, N. Spectral approximation for integral operators. Ph.D. Thesis, Indian Institute of Technology, Bombay, India, 2003

    Google Scholar 

  16. Graham, I.G., Sloan, I. On the compactness of certain integral operators. Journal of Mathematical Analysis and Applications, 68: 580–594 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keller, H.B. On the accuracy of finite difference approximations to the differential an integral operators. Numer. Math., 7(5): 412–419 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khare, K. Sampling theorem, bandlimited integral kernels and inverse problems. Inverse Problems, 23(4): 1395–1416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nair, M.T. Linear operator equations: Approximation and regularization. Singapore: World Scientific Publishing Company, 2009

    Book  MATH  Google Scholar 

  20. Osborn, J.E. Spectral approximation for compact operators. Math. Comput., 29: 712–725 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sloan, I. Iterated Galerkin method for eigenvalue problems. SIAM J. Numer. Anal., 13(5): 753–760 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wolf, E. New theory of partial coherence in the space-frequency domain. Par I: spectra and cross spectra of steady-state sources. J. Opt. Soc. Amer., 72(3): 343–351 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Additional information

Supported by Scientific Research Project of Beijing Municipal Education Commission (No. KM201811417013, KM201711417002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., He, Yh. Modifid Interpolatory Projection Method for Weakly Singular Integral Equation Eigenvalue Problems. Acta Math. Appl. Sin. Engl. Ser. 35, 327–339 (2019). https://doi.org/10.1007/s10255-019-0823-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-019-0823-9

Keywords

Navigation