Skip to main content

Signal recognition particle-depencent protein targeting, universal to all kingdoms of life

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 146))

Abstract

The signal recognition particle (SRP) and its membrane-bound receptor represent a ubiquitous protein-targeting device utilized by organisms as different as bacteria and humans, archaea and plants. The unifying concept of SRP-dependent protein targeting is that SRP binds to signal sequences of newly synthesized proteins as they emerge from the ribosome. In eukaryotes this interaction arrests or retards translation elongation until SRP targets the ribosome-nascent chain complexes via the SRP receptor to the translocation channel. Such channels are present in the endoplasmic reticulum of eukaryotic cells, the thylakoids of chloroplasts, or the plasma membrane of prokaryotes. The minimal functional unit of SRP consists of a signal sequence-recognizing protein and a small RNA. The as yet most complex version is the mammalian SRP whose RNA, together with six proteinaceous subunits, undergo an intricate assembly process. The preferential substrates of SRP possess especially hydrophobic signal sequences. Interactions between SRP and its receptor, the ribosome, the signal sequence, and the target membrane are regulated by GTP hydrolysis. SRP-dependent protein targeting in bacteria and chloroplasts slightly deviate from the canonical mechanism found in eukaryotes. Pro- and eukaryotic cells harbour regulatory mechanisms to prevent a malfunction of the SRP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EF-G:

Elongation factor G

ER:

Endoplasmic reticulum

Ffh:

Fifty-four homologue

GAP:

GTPase activating protein

GEF:

Guanine nucleotide exchange factor

HTH:

Helix turn helix

LHCP:

Light-harvesting chlorophyll binding protein

NAC:

Nascent chain-associated complex

ORF:

Open reading frame

PE:

Phosphatidyl ethanolamine

Pmf:

Proton motive force

RNC:

Ribosome-nascent chain complexes

RND:

Resistance-nodulation cell division

SRP:

Signal recognition particle

SR:

SRP receptor

TRAM:

Translocating chain-associated membrane protein

References

  • Akimaru J, Matsuyama S, Tokuda H, Mizushima S (1991) Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc Natl Acad Sci U S A 88:6545–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akita M, Sasaki S, Matsuyama S, Mizushima S (1990) SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. J Biol Chem 265:8164–8169

    Article  CAS  PubMed  Google Scholar 

  • Althoff S, Selinger D, Wise JA (1994) Molecular evolution of SRP cycle components: functional implications. Nucl Acid Res 22:1933–1947

    Article  CAS  Google Scholar 

  • Amin P, Sy DA, Pilgrim ML, Parry DH, Nussaume L, Hoffman NE (1999) Arabidopsis mutants lacking the 43-and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. Plant Physiol 121: 61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews DW, Walter P, Ottensmeyer FP (1985) Structure of the signal recognition particle by electron microscopy. Proc Natl Acad Sci U S A 82:785–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold CE, Wittrup KD (1994) The stress response to loss of signal recognition particle function in Saccharomyces cerevisiae. J Biol Chem 269:30412–30418

    Article  CAS  PubMed  Google Scholar 

  • Bacher G, Lütcke H, Jungnickel B, Rapaport TA, Dobberstein B (1996) Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381:248–251

    Article  CAS  PubMed  Google Scholar 

  • Bacher G, Pool M, Dobberstein B (1999) The ribosome regulates the GTPase of the β-subunit of the signal recognition particle receptor. J Cell Biol 146:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Beck K, Wu LF, Brunner J, Müller M (2000) Discrimination between SRP-and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19:134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Müller M (2001) YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2: 709–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann R, Bubeck D, Grassucci R, Penczek P, Verschoor A, Blobel G, Frank J (1997) Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278:2123–2126

    Article  CAS  PubMed  Google Scholar 

  • Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G (2001) Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:361–372

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HD (1998) Protein targeting: getting into the groove. Current Biol 8:R715–R718

    Article  CAS  Google Scholar 

  • Bernstein HD, Hyndman JB (2001) Physiological basis for conservation of the signal recognition particle targeting pathway in Escherichia coli. J Bacteriol 183:2187–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P (1989) Model for signal sequence recognition from amino-acid sequence of 54 K subunit of signal recognition particle. Nature 340:482–486

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HD, Zopf D, Freymann DM, Walter P (1993) Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog. Proc Natl Acad Sci U S A 90:5229–5233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuiyan SH, Gowda K, Hotokezaka H, Zwieb C (2000) Assembly of archaeal signal recognition particle from recombinant components Nucleic Acids Res 15:1365–1373

    Article  Google Scholar 

  • Bibi E, Herskovits AA, Bochkareva ES, Zelazny A (2001) Putative integral membrane SRP receptors. TIBS 26: 15–16

    CAS  PubMed  Google Scholar 

  • Binenbaum Z, Parola AH, Zaritsky A, Fishov I (1999) Transcription-and translation-dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation. Mol Microbiol 32:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Blobel G (1999) Protein targeting. Biosci Rep 20:303–344

    Article  Google Scholar 

  • Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes: I. Presence of proteolytically processed and unprocessed nascent immunoglobin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67: 835–851

    Article  CAS  PubMed  Google Scholar 

  • Blobel G, Dobberstein B (1975b) Transfer of proteins across membranes: II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862

    Article  CAS  PubMed  Google Scholar 

  • Blobel G, Sabatini D (1971) Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A 68:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgaize DB, Fournier MJ (1987) Initiation of translation is impaired in E. coli cells deficient in 4.5S RNA. Nature 325:281–284

    Article  CAS  PubMed  Google Scholar 

  • Bourgaize DB, Phillips TA, VanBogelen RA, Jones PG, Neidhardt FC, Fournier MJ (1990) Loss of 4.5S RNA induces the heat shock response and lambda prophage in Escherichia coli. J Bacteriol 172:1151–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne HR (1995) GTPases: a family of molecular switches and clocks. Philosoph Trans Royal Soc London B Biol Sci 349:283–289

    Article  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch of diverse cell functions. Nature 348:125–132

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  CAS  PubMed  Google Scholar 

  • Breukink E, Nouwen N, van Raalte A, Mizushima S, Tommassen J, de Kruijff B (1995) The C terminus of SecA is involved in both lipid binding and SecB binding. J Biol Chem 270:7902–7907

    Article  CAS  PubMed  Google Scholar 

  • Brown S (1987) Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli. Cell 49:825–833

    Article  CAS  PubMed  Google Scholar 

  • Brown S (1989) Time of action of 4.5S RNA in Escherichia coli translation. J Mol Biol 209:79–90

    Article  CAS  PubMed  Google Scholar 

  • Bui N, Strub K (1999) New insights into the signal recognition and elongation arrest activities of the signal recognition particle. Biol Chem 380:135–145

    Article  CAS  PubMed  Google Scholar 

  • Bunai K, Takamatsu H, Horinaka T, Oguro A, Nakamura K, Yamane K (1996) Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem Biophys Res Commun 227: 762–767

    Article  CAS  PubMed  Google Scholar 

  • Bunai K, Yamada K, Hayashi K, Nakamura K, Yamane K (1999) Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J Biochem 125:151–159

    Article  CAS  PubMed  Google Scholar 

  • Caldon CE, Yoong P, March PE (2001) Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41:289–297

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sinha K, Perumal K, Gu J, Reddy R (1998) Accurate 3′ end processing and adenylation of human signal recognition particle RNA and Alu RNA in vitro. J Biol Chem 273:35023–35031

    Article  CAS  PubMed  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810

    Article  CAS  PubMed  Google Scholar 

  • Clemons WM, Gowda K, Black SD, Zwieb C, Ramakrishnan V (1999) Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 resolution: evidence for the mechanism for signal peptide binding. J Mol Biol 292: 697–705

    Article  CAS  PubMed  Google Scholar 

  • Collinson I, Breyton C, Duong F, Tziatzios C, Schubert D, Or E, Rapoport T, Kuhlbrandt W (2001) Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J 20:2462–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly T, Gilmore R (1989) The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57:599–610

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N, Salmond GP (1986) The Escherichia coli heat shock regulatory gene is immediately downstream of a cell division operon: the fam mutation is allelic with rpoH. Mol Gen Genet 203:535–539

    Article  Google Scholar 

  • Cristobal S, Scotti P, Luirink J, von Heijne G, de Gier JW (1999) The signal recognition particle-targeting pathway does not necessarily deliver proteins to the sec-translocase in Escherichia coli. J Biol Chem 274:20068–20070

    Article  CAS  PubMed  Google Scholar 

  • Crowley KS, Liao S, Worrell VE, Reinhart GD, Johnson AE (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78:461–471

    Article  CAS  PubMed  Google Scholar 

  • Dale H, Krebs MP (1999) Membrane insertion kinetics of a protein domain in vivo. J Biol Chem 274: 22693–22698

    Article  CAS  PubMed  Google Scholar 

  • De Gier JWL, Mansournia P, Valent QA, Phillips GJ, Luirink J, von Heijne G (1996) Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett 399: 307–309

    Article  PubMed  Google Scholar 

  • De Gier JW, Scotti PA, Saaf A, Valent QA, Kuhn A, Luirink J, von Heijne G (1998) Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci U S A 95:14646–14651

    Article  PubMed  PubMed Central  Google Scholar 

  • De Leeuw E, Poland D, Mol O, Sinning I, ten Hagen-Jongman CM, Oudega B, Luirink J (1997) Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett 416:225–229

    Article  PubMed  Google Scholar 

  • De Leeuw E, te Kaat K, Moser C, Menestrina G, Demel R, de Kruijff B, Oudega B, Luirink J, Sinning I (2000) Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J 19:531–541

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLille J, Peterson EC, Johnson T, Moore M, Kight A, Henry R (2000) A novel precursor recognition element facilitates posttranslational binding to the signal recognition particle in chloroplasts. Proc Natl Acad Sci U S A 97:1926–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805

    Article  CAS  PubMed  Google Scholar 

  • Deshaies RJ, Sanders SL, Feldheim DA, Schekman R (1991) Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349:806–808

    Article  CAS  PubMed  Google Scholar 

  • Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    Article  CAS  PubMed  Google Scholar 

  • Diener JL, Wilson C (2000) Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry 39:12862–12874

    Article  CAS  PubMed  Google Scholar 

  • Driessen AJ (2001) SecB, a molecular chaperone with two faces. Trends Microbiol 9:193–196

    Article  CAS  PubMed  Google Scholar 

  • Driessen AJ, Manting EH, van der Does C (2001) The structural basis of protein targeting and translocation in bacteria. Nat Struct Biol 8:492–498

    Article  CAS  PubMed  Google Scholar 

  • Duong F, Wickner W (1997) The SecDFYajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 16:4871–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong F, Eichler J, Price A, Leonard MR, Wickner W (1997) Biogenesis of the Gram-negative bacterial envelope. Cell 91:567–573

    Article  CAS  PubMed  Google Scholar 

  • Economou A (2000) Bacterial protein translocase: a unique molecular machine with an army of substrates. FEBS Lett 2000 476:18–21

    CAS  Google Scholar 

  • Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 1995 83:1171–1181

    CAS  Google Scholar 

  • Eggers DK, Welch WJ, Hansen WJ (1997) Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol Biol Cell 8:1559–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichacker LA, Henry R. Function of a chloroplast SRP in thylakoid protein export (2001) Biochim Biophys Acta 12:120–134

    Article  Google Scholar 

  • Eichler J, Moll R (2001) The signal recognition particle of archaea. Trends Microbiol 9:130–136

    Article  CAS  PubMed  Google Scholar 

  • Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst F, Hoffschulte HK, Thome-Kromer B, Swidersky UE, Werner PK, Muller M (1994) Precursor-specific requirements for SecA, SecB, and Δ µH+ during protein export of Escherichia coli. J Biol Chem 269: 12840–12845

    Article  CAS  PubMed  Google Scholar 

  • Fekkes P, van der Does C, Driessen AJ (1997) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16:6105–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke K, Plath K, Panzner S, Prehn S, Rapoport TA, Hartmann E, Sommer T (1996) A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J 15:1482–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freymann DM, Keenan RJ, Stroud RM, Walter P (1997) Structure of the conserved GTPase domain of the signal recognition particle. Nature 385:361–364

    Article  CAS  PubMed  Google Scholar 

  • Freymann DM, Keenan RJ, Stroud RM, Walter P (1999) Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP. Nature Struct Biol 6:793–801

    Article  CAS  PubMed  Google Scholar 

  • Fulga TA, Sinning I, Dobberstein B, Pool MR (2001) SRβ coordinates signal sequence release from SRP with ribosome binding to the translocon. EMBO J 20:2338–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fünfschilling U, Rospert S (1999) Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol Biol Cell 10:3289–3299

    Article  PubMed  PubMed Central  Google Scholar 

  • Gellman S (1991) On the role of methionine residues in the sequence-independent recognition of nonpolar protein surfaces. Biochemistry 30:6633–6636

    Article  CAS  PubMed  Google Scholar 

  • George R, Beddoe T, Landl K, Lithgow T (1998) The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc Natl Acad Sci U S A 95:2296–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill DR, Salmond GP (1987) The Escherichia coli cell division proteins FtsY, FtsE and FtsX are inner membrane-associated. Mol Gen Genet 210:504–508

    Article  CAS  PubMed  Google Scholar 

  • Gilmore R, Walter P, Blobel G (1982a) Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol 95:463–469

    Article  CAS  PubMed  Google Scholar 

  • Gilmore R, Walter P, Blobel G (1982b) Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J Cell Biol 95:470–477

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS (1991) Inside a living cell. TIBS 16:203–206

    CAS  PubMed  Google Scholar 

  • Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75:615–630

    Article  PubMed  Google Scholar 

  • Görlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71:489–503

    Article  PubMed  Google Scholar 

  • Gorodkin J, Knudsen B, Zwieb C, Samuelsson T (2001) SRPDB (Signal Recognition Particle Database). Nucleic Acids Res 29:169–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosshans H, Deinert K, Hurt E, Simos G (2001) Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with SRP-RNA, and Xpo1p-mediated export. J Cell Biol 153: 745–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groves MR, Mant A, Kuhn A, Koch J, Dubel S, Robinson C, Sinning I (2001) Functional characterization of recombinant chloroplast signal recognition particle. J Biol Chem. 276:27778–27786

    Article  CAS  PubMed  Google Scholar 

  • Gruss OJ, Feick P, Frank R, Dobberstein B (1999) Phosphorylation of components of the ER translocation site. Eur J Biochem 260:785–793

    Article  CAS  PubMed  Google Scholar 

  • Gundelfinger ED, Krause E, Melli M, Dobberstein B (1983) The organization of the 7SL RNA in the signal recognition particle. Nucl Acid Res 11:7363–7374

    Article  CAS  Google Scholar 

  • Guthrie B, Wickner W (1990) Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol 172:5555–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez JA, Crowley PJ, Cvitkovitch DG, Brady LJ, Hamilton IR, Hillman JD, Bleiweis AS (1999) Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 145:357–366

    Article  CAS  PubMed  Google Scholar 

  • Hamman BD, Hendershot LM, Johnson AE (1998) BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758

    Article  CAS  PubMed  Google Scholar 

  • Hanein D, Matlack KE, Jungnickel B, Plath K, Kalies KU, Miller KR, Rapoport TA, Akey CW (1996) Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87:721–732

    Article  CAS  PubMed  Google Scholar 

  • Hann BC, Walter P (1991) The signal recognition particle in S. cerevisiae. Cell 67:131–144

    Article  CAS  PubMed  Google Scholar 

  • Hansen W, Walter P (1988) Prepro-carboxypeptidase Y and a truncated form of pre-invertase, but not fulllength pre-invertase, can be posttranslationally translocated across microsomal vesicle membranes from Saccharomyces cerevisiae. J Cell Biol 106:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Hatsuzawa K, Tagaya M, Mizushima S (1997) The hydrophobic region of signal peptides is a determinant for SRP recognition and protein translocation across the ER membrane. J Biochem 121:270–277

    Article  CAS  PubMed  Google Scholar 

  • He XP, Bataille N, Fried HM (1994) Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain. J Cell Sci 107:903–912

    Article  CAS  PubMed  Google Scholar 

  • Hegde RS, Lingappa VR (1996) Sequence-specific alteration of the ribosome-membrane junction exposes nascent secretory proteins to the cytosol. Cell 85:217–228

    Article  CAS  PubMed  Google Scholar 

  • Hegde RS, Voigt S, Rapoport TA, Lingappa VR (1998) TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 92:621–631

    Article  CAS  PubMed  Google Scholar 

  • Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA (1998) Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci U S A 95:2250–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell K, Neupert W, Stuart RA (2001) Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20:1281–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann JM, Neupert W, Stuart RA (1997) Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. EMBO J 16:2217–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herskovitz AA, Bibi E (2000) Association of Escherichia coli ribosomes with the inner membrane requires the signal recognition particle receptor but is independent of the signal recognition particle. Proc. Natl Acad Sci U S A 97: 4621–4626

    Article  Google Scholar 

  • Herskowitz AA, Seluanov A, Rajsbaum R, ten Hagen-Jongman CM, Henrichs T, Bochkareva ES, Phillips GJ, Probst FJ, Nakae T, Ehrmann M, Luirink J, Bibi E (2001) Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Rep 2:1040–1046

    Article  Google Scholar 

  • Hesterkamp T, Hauser S, Lutcke H, Bukau B (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A 93:4437–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K (2000) Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146:65–75

    Article  CAS  PubMed  Google Scholar 

  • Hoffman NE, Franklin AE (1994) Evidence for a stromal GTP requirement for the integration of a chlorophyll a/b-binding polypeptide into thylakoid membranes. Plant Physiol 105:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda K, Nakamura K, Nishiguchi M, Yamane K (1993) Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J Bacteriol 175:4885–4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson MR, Pederson T (1998) Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A 95:7981–7986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagath JR, Rodnina MV, Lentzen G, Wintermeyer W (1998) Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Biochemistry 37:15408–15413

    Article  CAS  PubMed  Google Scholar 

  • Jagath JR, Rodnina MV, Wintermeyer W (2000) Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J Mol Biol 295:745–753

    Article  CAS  PubMed  Google Scholar 

  • Jagath JR, Matassova NB, de Leeuw E, Warnecke JM, Lentzen G, Rodnina MV, Luirink J, Wintermeyer W (2001) Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 7:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen C, Pedersen S (1994) Concentrations of 4.5S RNA and Ffh protein in Escherichia coli: the stability of Ffh protein is dependent on the concentration of 4.5S RNA. J Bacteriol 176:7148–7145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen CG, Brown S, Pedersen S (1994) Effect of 4.5S RNA depletion on Escherichia coli protein synthesis and secretion. J Bacteriol 176:2502–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonas-Straube E, Hutin C, Hoffman NE, Schunemann D (2001) Functional analysis of the protein-interacting domains of chloroplast SRP43. J Biol Chem 276:24654–24660

    Article  CAS  PubMed  Google Scholar 

  • Kaine BP (1990) Structure of the archaebacterial 7S RNA molecule. Mol Gen Genet 221:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kalies KU, Görlich D, Rapoport TA (1994) Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61p-complex. J Cell Biol 126:925–934

    Article  CAS  PubMed  Google Scholar 

  • Keenan R, Freymann DM, Walter P, Stroud RM (1998) Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94:181–191

    Article  CAS  PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70: 755–775

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Rusch S, Luirink J, Kendall DA (2001) Is Ffh required for export of secretory proteins? FEBS Lett 505:245–248

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Rajapandi T, Oliver D (1994) SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 78:845–853

    Article  CAS  PubMed  Google Scholar 

  • Klein RR, Mason HS, Mullet JE Light-regulated translation of chloroplast proteins (1988) I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Cell Biol 106:289–301

    Article  CAS  PubMed  Google Scholar 

  • Klimyuk VI, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones JD, Hoffman NE, Nussaume L (1999) A chromodomain protein encoded by the arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoblauch NT, Rudiger S, Schonfeld HJ, Driessen AJ, Schneider-Mergener J, Bukau B (1999) Substrate specificity of the SecB chaperone. J Biol Chem 274:34219–34225

    Article  CAS  PubMed  Google Scholar 

  • Koch HG, Müller M (2000) Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol 150:689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK, Schimz KL, Mechler B, Müller M (1999) In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein targeting pathways of Escherichia coli. Mol Biol Cell 10:2163–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HG, Moser M, Schimz KL, Müller M (2002) The integration of YidC into the cytoplasmic membrane of E. coli requires the signal recognition particle, SecA and SecYEG. J Biol Chem 277:5715–5718

    Article  CAS  PubMed  Google Scholar 

  • Kremer BH, van der Kraan M, Crowley PJ, Hamilton IR, Brady LJ, Bleiweis AS (2001) Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J Bacteriol 183:2543–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg UC, Walter P, Johnson AE (1986) Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc Natl Acad Sci U S A 83:8604–8608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurita K, Honda K, Suzuma S, Takamatsu H, Nakamura K, Yamane K (1996) Identification of a region of Bacillus subtilis Ffh, a homologue of mammalian SRP54 protein, that is essential for binding to small cytoplasmic RNA. J Biol Chem 271:13140–13146

    Article  CAS  PubMed  Google Scholar 

  • Kusukawa N, Yura T, Ueguchi C, Akiyama Y, Ito K (1989) Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J 8:3517–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen N, Zwieb C (1991) SRP-RNA sequence alignment and secondary structure. Nucl Acid Res 19:209–215

    Article  CAS  Google Scholar 

  • Lauring B, Sakai H, Kreibich G, Wiedmann M (1995) Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc Natl Acad Sci U S A 92:5411–5415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Bernstein HD (2001) The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc Natl Acad Sci U S A 98:3471–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legate KR, Falcone D, Andrews DW (2000) Nucleotide dependent binding of the GTPase domain of the signal recognition particle receptor b-subunit to the a-subunit. J Biol Chem 275:27439–27446

    Article  CAS  PubMed  Google Scholar 

  • Lentzen G, Dobberstein B, Wintermeyer W (1994) Formation of SRP-like particle induces a conformational change in E. coli 4.5S RNA. FEBS Lett 348:233–238

    Article  CAS  PubMed  Google Scholar 

  • Li X, Henry R, Yuan J, Cline K, Hoffman NE (1995) A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proc Natl Acad Sci U S A 92:3789–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipp J, Dobberstein B, Haeuptle MT (1987) Signal recognition particle arrests elongation of nascent secretory and membrane proteins at multiple sites in a transient manner. J Biol Chem 262:1680–1684

    Article  CAS  PubMed  Google Scholar 

  • Lorimer GH (1996) A quantitative assessment of the role of the chaperon in proteins in protein folding in vivo. FASEB J 10:5–9

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Qi HY, Hyndman JB, Ulbrandt ND, Teplyakov A, Tomasevic N, Bernstein HD (2001) Evidence for a novel GTPase priming step in the SRP protein targeting pathway. EMBO J 20:6724–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luirink J, ten Hagen-Jongman CM, van der Weijden CC, Oudega B, High S, Dobberstein B, Kusters R (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J 13: 2289–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lütcke H, Prehn S, Asford A, Remus M, Frank R, Dobberstein B (1993) Assembly of the 68-and 72-kD proteins of signal recognition particle with 7S RNA. J Cell Biol 121:977–985

    Article  PubMed  Google Scholar 

  • Lynch AS, Wang JC (1993) Anchoring of DNA to bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175:1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Cook DN, Pon NG, Hearst JE (1994) Efficient anchoring of RNA polymerase in Escherichia coli during coupled transcription-translation of genes encoding integral inner membrane polypeptides. J Biol Chem 269: 15362–15370

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane J, Müller M (1995) The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal recognition particle. Eur J Biochem 233:766–771

    Article  CAS  PubMed  Google Scholar 

  • Maeshima H, Okuno E, Aimi T, Morinaga T, Itoh T (2001) An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA. FEBS Lett 507:336–340

    Article  CAS  PubMed  Google Scholar 

  • Manting EH, Driessen AJ (2000) Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol 37:226–238

    Article  CAS  PubMed  Google Scholar 

  • Manting EH, van Der Does C, Remigy H, Engel A, Driessen AJ (2000) SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J 19:852–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason N, Ciufo LF, Brown JD (2000) Elongation arrest is a physiologically important function of signal recognition particle. EMBO J 19:4164–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97:553–564

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama S, Fujita Y, Sagara K, Mizushima S (1992) Overproduction, purification and characterization of SecD and SecF, integral membrane components of the protein translocation machinery of Escherichia coli. Biochim Biophys Acta 1122:77–84

    Article  CAS  PubMed  Google Scholar 

  • Menetret JF, Neuhof A, Morgan DG, Plath K, Radermacher M, Rapoport TA, Akey CW (2000) The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 6:1219–1232

    Article  CAS  PubMed  Google Scholar 

  • Meyer DI, Krause E, Dobberstein B (1982) Secretory protein translocation across membranes-the role of the “docking protein”. Nature 297:647–650

    Article  CAS  PubMed  Google Scholar 

  • Meyer HA, Grau H, Kraft R, Kostka S, Prehn S, Kalies KU, Hartmann E (2000) Mammalian Sec61 is associated with Sec62 and Sec63. J Biol Chem 275:14550–14557

    Article  CAS  PubMed  Google Scholar 

  • Meyer TH, Menetret JF, Breitling R, Miller KR, Akey CW, Rapoport TA (1998) The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J Mol Biol 1285: 1789–1800

    Google Scholar 

  • Miller JD, Wilhelm H, Gierasch L, Gilmore R, Walter P (1993) GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366:351–354

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Bernstein HD, Walter P (1994) Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367:657–659

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Tajima S, Lauffer L, Walter P (1995) The β subunit of the signal recognition particle receptor is a transmembrane GTPase that anchors the α-subunit, a peripheral GTPase, to the endoplasmic reticulum membrane. J Cell Biol 128:273–282

    Article  CAS  PubMed  Google Scholar 

  • Millman JS, Andrews DW (1997) Switching the model: a concerted mechanism for GTPases in protein targeting. Cell 89:673–676

    Article  CAS  PubMed  Google Scholar 

  • Millman JS, Andrews DW (1999) A site-specific, membrane-dependent cleavage event defines the membrane binding domain of FtsY. J Biol Chem 274:33227–33234

    Article  CAS  PubMed  Google Scholar 

  • Millman JS, Qi HY, Vulcu F, Bernstein HD, Andrews DW (2001) FtsY binds to the Escherichia coli inner membrane via interactions with phosphatidylethanolamine and membrane proteins. J Biol Chem 276:25982–25989

    Article  CAS  PubMed  Google Scholar 

  • Mitchell C, Oliver D (1993) Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol Microbiol 10:483–497

    Article  CAS  PubMed  Google Scholar 

  • Moll R, Schmidtke S, Schafer G (1999) Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur J Biochem 259:441–448

    Article  CAS  PubMed  Google Scholar 

  • Montoya G, Svensson C, Luirink J, Sinning I (1997) Crystal structure of the NG domain from the signalrecognition particle receptor FtsY. Nature 385:365–368

    Article  CAS  PubMed  Google Scholar 

  • Montoya G, Kaat K, Moll R, Schafer G, Sinning I (2000) The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Structure Fold Des 15:515–525

    Article  Google Scholar 

  • Moore M, Harrison MS, Peterson EC, Henry R (2000) Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J Biol Chem 275:1529–1532

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Ito K (2001) The Sec protein-translocation pathway. Trends Microbiol 9:494–500

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Mol O, Goody RS, Sinning I (1997) The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc Natl Acad Sci U S A 94:11339–11344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothes W, Prehn S, Rapoport TA (1994) Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J 13:3973–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothes W, Heinrich SU, Graf R, Nilsson I, von Heijne G, Brunner J, Rapoport TA (1997) Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89:523–533

    Article  CAS  PubMed  Google Scholar 

  • Müller G, Zimmermann R (1987) Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein. EMBO J 6:2099–2107

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller M, Koch HG, Beck J, Schäfer U (2001) Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. Progr Nucl Acid Res Mol Biol 66:107–157

    Article  Google Scholar 

  • Mutka SC, Walter P (2001) Multifaceted physiological response allows yeast to adapt to the loss of the signal recognition particle-dependent protein-targeting pathway. Mol Biol Cell 12:577–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Imai Y, Nakamura A, Yamane K (1992) Small cytoplasmic RNA of Bacillus subtilis: functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J Bacteriol 174:2185–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Fujii Y, Shibata T, Yamane K (1999a) Depletion of Escherichia coli 4.5S RNA leads to an increase in the amount of protein elongation factor EF-G associated with ribosomes. Eur J Biochem 259:543–550

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Yahagi S, Yamazaki T, Yamane K (1999b) Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem 274: 13569–13576

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Miyamoto H, Suzuma S, Sakamato T, Kawai G, Yamane K (2001) Minimal functional structure of Escherichia coli 4.5S RNA required for binding elongation factor EF-G. J Biol Chem 276:22844–22849

    Article  CAS  PubMed  Google Scholar 

  • Neuhof A, Rolls MM, Jungnickel B, Kalies KU, Rapoport TA (1998) Binding of signal recognition particle gives ribosome/nascent chain complexes a competitive advantage in endoplasmic reticulum membrane interaction. Mol Biol Cell 9:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann-Haefelin C, Schäfer U, Müller M, Koch HG (2000) SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J 19: 6419–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newitt JA, Bernstein HD (1997) The N domain of the signal recognition particle 54 kDa subunit promotes efficient signal sequence binding. Eur J Biochem 245:720–729

    Article  CAS  PubMed  Google Scholar 

  • Ng DT, Brown JD, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134:269–278

    Article  CAS  PubMed  Google Scholar 

  • Nilsson R, Brunner J, Hoffman NE, van Wijk KJ (1999) Interactions of ribosome nascent chain complexes of the chloroplast-encoded D1 thylakoid membrane protein with cpSRP54. EMBO J 18:733–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama K, Suzuki T, Tokuda H (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81

    Article  CAS  PubMed  Google Scholar 

  • Ogg SC, Barz WP, Walter P (1998) A functional GTPase domain, but not its transmembrane domain, is required for function of the SRP receptor b-subunit. J Cell Biol 142:341–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer JC, Howe CJ (2001) Algal plastid genomes encode homologues of the SRP-associated RNA. Mol Microbiol 27:508–510

    Article  Google Scholar 

  • Padmanabhan S, Freymann DM (2001) The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Structure 9:859–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81:561–570

    Article  CAS  PubMed  Google Scholar 

  • Peluso P, Herschlag D, Nock S, Freymann DM, Johnson AE, Walter P (2000) Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 288:1640–1643

    Article  CAS  PubMed  Google Scholar 

  • Phillips GJ, Silhavy TJ (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim ML, van Wijk KJ, Parry DH, Sy DA, Hoffman NE (1998) Expression of a dominant negative form of cpSRP54 inhibits chloroplast biogenesis in Arabidopsis. Plant J 13:177–186

    Article  CAS  PubMed  Google Scholar 

  • Plath K, Rapoport TA (2000) Spontaneous release of cytosolic proteins from posttranslational substrates before their transport into the endoplasmic reticulum. J Cell Biol 151:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T (2000) Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A 97:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poritz MA, Strub K, Walter P (1988) Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain. Cell 55:4–6

    Article  CAS  PubMed  Google Scholar 

  • Poritz MA, Bernstein HD, Strub K, Zopf D, Wilhelm H, Walter P (1990) An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Potter MD, Nicchitta CV (2000) Regulation of ribosome detachment from the mammalian endoplasmic reticulum membrane. J Biol Chem 275:33828–33835

    Article  CAS  PubMed  Google Scholar 

  • Potter MD, Seiser RM, Nicchitta CV (2001) Ribosome exchange revisited: a mechanism for translation-coupled ribosome detachment from the ER membrane. Trends Cell Biol 11:112–115

    Article  CAS  PubMed  Google Scholar 

  • Powers T, Walter P (1995) Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Prinz A, Hartmann E, Kalies KU (2000) Sec61p is the main ribosome receptor in the endoplasmic reticulum of Saccharomyces cerevisiae. Biol Chem 381:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Pugsley AP (1993) The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 57: 50–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi HY, Bernstein HD (1999) SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J Biol Chem 274:8993–8997

    Article  CAS  PubMed  Google Scholar 

  • Raden D, Gilmore R (1998) Signal recognition particle-dependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex. Mol Biol Cell 9:117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall LL, Hardy SJ (1983) Preparation of free and membrane-bound polysomes from Escherichia coli. Meth Enzymol 97:70–76

    Article  CAS  Google Scholar 

  • Randall LL, Hardy SJ (1995) High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. TIBS 20:65–69

    CAS  PubMed  Google Scholar 

  • Rapiejko PJ, Gilmore R (1997) Empty site forms of the SRP54 and SRα GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 89:703–713.

    Article  CAS  PubMed  Google Scholar 

  • Rapoport TA, Jungnickel B, Kutay U (1996) Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 65:271–303

    Article  CAS  PubMed  Google Scholar 

  • Rapoport TA, Matlack KE, Plath K, Misselwitz B, Staeck O (1999) Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol Chem 380:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Ribes V, Römisch K, Giner A, Dobberstein B, Tollervey D (1990) E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell 63:591–600

    Article  CAS  PubMed  Google Scholar 

  • Robb A, Brown JD (2001) Protein transport: two translocons are better than one. Mol Cell 8:484–486

    Article  CAS  PubMed  Google Scholar 

  • Römisch K, Webb J, Herz J, Prehn S, Frank R, Vingron M, Dobberstein B (1989) Homology of the 54 K protein of the signal recognition particle, docking protein, and two E. coli proteins with putative GTPbinding domains. Nature 340:478–482

    Article  PubMed  Google Scholar 

  • Römisch K, Webb J, Lingelbach K, Gausepohl H, Dobberstein B (1990) The 54 kDa protein of signal recognition particle contains a methionine rich RNA binding domain. J Cell Biol 111:1793–1802

    Article  PubMed  Google Scholar 

  • Rose MA, Weeks KM (2001) Visualizing induced fit in early assembly of the human signal recognition particle. Nature Struct Biol 8:515–520

    Article  CAS  PubMed  Google Scholar 

  • Rothblatt JA, Meyer DI (1986) Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system Cell 44:619–628

    Article  CAS  PubMed  Google Scholar 

  • Rothe C, Lehle L (1998) Sorting of invertase signal peptide mutants in yeast dependent and independent on the signal-recognition particle. Eur J Biochem 252:16–24

    Article  CAS  PubMed  Google Scholar 

  • Sadler I, Chiang A, Kurihara T, Rothblatt J, Way J, Silver P (1989) A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J Cell Biol 109:2665–2675

    Article  CAS  PubMed  Google Scholar 

  • Schatz PJ, Beckwith J (1990) Genetic analysis of protein export in Escherichia coli. Ann Rev Genet 24: 215–248

    Article  CAS  PubMed  Google Scholar 

  • Schmitz U, James TL, Lukavsky P, Walter P (1999) Structure of the most conserved internal loop in SRP RNA. Nature Struct Biol 6:634–638

    Article  CAS  PubMed  Google Scholar 

  • Scholz C, Stoller T, Zarnt T, Fischer G, Schmid FX (1997) Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J 16:54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuenemann D, Gupta S, Persello-Cartieaux F, Klimyuk VI VI, Jones JDG, Nussaume L, Hoffman NE (1998) A novel signal recognition particle targets light-harvesting proteins to the thylakoid membranes Proc Natl Acad Sci U S A 95:10312–10316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz HN, Jorgenson BB (2001) Big Bacteria. Ann Rev Microbiol 55:105–137

    Article  CAS  Google Scholar 

  • Scotti PA, Valent QA, Manting EH, Urbanus ML, Driessen AJ, Oudega B, Luirink J (1999) SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J Biol Chem 274:29883–29888

    Article  CAS  PubMed  Google Scholar 

  • Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiser RM, Nicchitta CV (2000) The fate of membrane-bound ribosomes following the termination of protein synthesis. J Biol Chem 275:33820–33827

    Article  CAS  PubMed  Google Scholar 

  • Seluanov A, Bibi E (1997) FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins (1997). J Biol Chem 272:2053–2055

    Article  CAS  PubMed  Google Scholar 

  • Shiabata T, Fujii Y, Nakamura Y, Nakamura K, Yamane K (1996) Identification of protein synthesis elongation factor G as a 4.5S RNA-binding protein in Escherichia coli. J Biol Chem 271:13162–13168

    Article  Google Scholar 

  • Sianidis G, Karamanou S, Vrontou E, Boulias K, Repanas K, Kyrpides N, Politou AS, Economou A (2001) Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J 20: 961–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel V, Walter P (1985) Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. J Cell Biol 100:1913–1921

    Article  CAS  PubMed  Google Scholar 

  • Siegel V, Walter P (1986) Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320:81–84

    Article  CAS  PubMed  Google Scholar 

  • Siegel V, Walter P (1988a) Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 52:39–49

    Article  CAS  PubMed  Google Scholar 

  • Siegel V, Walter P (1988b) Binding sites of the 19 kDa and 68/72 kDa signal recognition particle (SRP) proteins on SRP RNA as determined in protein-RNA footprinting. Proc Natl Acad Sci U S A 85:4315–4319

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyders S, Ramamurthy V, Oliver D (1997) Identification of a region of interaction between Escherichia coli SecA and SecY proteins. J Biol Chem 272:11302–11306

    Article  CAS  PubMed  Google Scholar 

  • Song W, Raden D, Mandon EC, Gilmore R (2000) Role of Sec61a in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel. Cell 100:333–343

    Article  CAS  PubMed  Google Scholar 

  • Stirling CJ (1999) Protein targeting to the endoplasmic reticulum in yeast. Microbiology 145:991–998

    Article  CAS  PubMed  Google Scholar 

  • Stirling CJ, Hewitt EW (1992) The S. cerevisiae SEC65 gene encodes a component of yeast signal recognition particle with homology to human SRP19. Nature 356:534–537

    Article  CAS  PubMed  Google Scholar 

  • Strub K, Walter P (1990) Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Mol Cell Biol 10:777–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strub K, Fornallaz M, Bui N (1999) The Alu domain homolog of the yeast signal recognition particle consists of an SRP14p homodimer and a yeast-specific RNA structure. RNA 10:1333–1347

    Article  Google Scholar 

  • Struck JC, Hartmann RK, Toschka HY, Erdmann VA (1989) Transcription and processing of Bacillus subtilis small cytoplasmic RNA. Mol Gen Genet 215:478–482

    Article  CAS  PubMed  Google Scholar 

  • Suzuma S, Hayashi K, Nakamura K, Yamane K (1999) Analysis of Escherichia coli 4.5S RNA binding affinity to Ffh and EF-G. FEMS Microbiol Lett 180:271–277

    Article  CAS  PubMed  Google Scholar 

  • Swidersky UE, Rienhöfer-Schwer A, Werner PK, Ernst F, Benson SA, Hoffschulte HK, Müller M (1992) Biochemical analysis of the biogenesis and function of the Escherichia coli export factor SecY. Europ J Biochem 207:803–811

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu H, Bunai K, Horinaka T, Oguro A, Nakamura K, Watabe K, Yamane K (1997) Identification of a region required for binding to presecretory protein in Bacillus subtilis Ffh, a homologue of the 54-kDa subunit of mammalian signal recognition particle. Eur J Biochem 248:575–582

    Article  CAS  PubMed  Google Scholar 

  • Taura T, Akiyama Y, Ito K (1994) Genetic analysis of SecY: additional export-defective mutations and factors affecting their phenotypes. Mol Gen Genet 243:261–269

    Article  CAS  PubMed  Google Scholar 

  • Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  CAS  PubMed  Google Scholar 

  • Thomas Y, Bui N, Strub K (1997) A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Nucl Acid Res 25:1920–1929

    Article  CAS  Google Scholar 

  • Tian H, Beckwith J (2002) Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway. J Bacteriol 184:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Boyd D, Beckwith J (2000) A mutant hunt for defects in membrane protein assembly yields mutations affecting signal recognition particle and Sec machinery. Proc Natl Acad Sci U S A 97:4730–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triplett TL, Sgrignoli AR, Gao FB, Yang YB, Tai PC, Gierasch LM (2001) Functional signal peptides bind a soluble N-terminal fragment of SecA and inhibit its ATPase activity. J Biol Chem 276:19648–19655

    Article  CAS  PubMed  Google Scholar 

  • Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125

    CAS  PubMed  Google Scholar 

  • Tu CJ, Schuenemann D, Hoffman NE (1999) Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. J Biol Chem 274:27219–27224

    Article  CAS  PubMed  Google Scholar 

  • Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, Heim N, Nastainczyk W, Volkmer J, Zimmermann R (2000) Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci U S A 97:7214–7219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyystjärvi T, Herranen M, Aro EM (2001) Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complex controls the synthesis of D1 protein. Molec Microbiol 40: 476–484

    Article  Google Scholar 

  • Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196

    Article  CAS  PubMed  Google Scholar 

  • Urbanus ML, Scotti PA, Froderberg L, Saaf A, de Gier JW, Brunner J, Samuelson JC, Dalbey RE, Oudega B, Luirink J (2001) Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep 2:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanus ML, Froderberg L, Drew D, Bjork P, de Gier JW, Brunner J, Oudega B, Luirink J (2002) Targeting, insertion and localization of E. coli YidC. J Biol Chem 277:12718–12723

    Article  CAS  PubMed  Google Scholar 

  • Utz PJ, Hottelet M, Le TM, Kim SJ, Geiger ME, van Venrooij WJ, Anderson P (1998) The 72 kDa component of signal recognition particle is cleaved during apoptosis. J Biol Chem 273:35362–35370

    Article  CAS  PubMed  Google Scholar 

  • Valent QA, de Gier JWL, von Heijne G, Kendall DA, ten Hagen-Jongman CM, Oudega B, Luirnk J (1997) Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol Microbiol 25:53–64

    Article  CAS  PubMed  Google Scholar 

  • Valent QA, Scotti PA, High S, de Gier JWL, von Heijne G, Lentzen G, Wintermeyer W, Oudega B, Luirink J (1998) The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 17: 2504–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt S, Jungnickel B, Hartmann E, Rapoport TA (1996) Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol 134:25–35

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1981) Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in vitro assembled polysomes synthesizing secretory protein. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol 91:551–561

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Blobel G (1983) Disassembly and reconstitution of signal recognition particle. Cell 34:525–533

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Miller A, Kendall DA (2000) Signal peptide determinants of SecA binding and stimulation of ATPase activity. J Biol Chem 275:10154–10159

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Sakai H, Wiedmann M (1995) NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J Cell Biol 130: 519–528

    Article  CAS  PubMed  Google Scholar 

  • Waters MG, Blobel G (1986) Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. J Cell Biol 102:1543–1550

    Article  CAS  PubMed  Google Scholar 

  • Weichenrieder O, Wild K, Strub K, Cusack S (2000) Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408:167–173

    Article  CAS  PubMed  Google Scholar 

  • Weichenrieder O, Stehlin C, Kapp U, Birse DE, Timmins PA, Strub K, Cusack S (2001) Hierarchical assembly of the Alu domain of the mammalian signal recognition particle. RNA 7:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner W, Leonard MR (1996) Escherichia coli preprotein translocase. J Biol Chem 271:29514–29516

    Article  CAS  PubMed  Google Scholar 

  • Wiedmann M, Kurzchalia TV, Hartmann E, Rapoport TA (1987) A signal sequence receptor in the endoplasmic reticulum membrane. Nature 328:830–833

    Article  CAS  PubMed  Google Scholar 

  • Wiedmann B, Sakai H, Davis TA, Wiedmann M (1994) A protein complex required for signal-sequence-specific sorting and translocation. Nature 370:434–440

    Article  CAS  PubMed  Google Scholar 

  • Wild J, Rossmeissl P, Walter WA, Gross CA (1996) Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 178:3608–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild K, Sinning I, Cusack S (2001) Crystal structure of an early protein-RNA assembly complex of the signal recognition particle. Science 294:598–601

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson BM, Tyson JR, Stirling CJ (2001) Ssh1p determines the translocation and dislocation capacities of the yeast endoplasmic reticulum. Dev Cell 1:401–409

    Article  CAS  PubMed  Google Scholar 

  • Wolin SL, Walter P (1989) Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J Cell Biol 109:2617–2622

    Article  CAS  PubMed  Google Scholar 

  • Wood H, Luirink J, Tollervey D (1992) Evolutionary conserved nucleotides within the E. coli 4.5S RNA are required for association with P48 in vitro and for optimal function in vivo. Nucl Acid Res 20:5919–5925

    Article  CAS  Google Scholar 

  • Xu Z, Knafels JD, Yoshino K (2000) Crystal structure of the bacterial protein export chaperone secB. Nat Struct Biol 7:1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Yahr TL, Wickner WT (2000) Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J 19: 4393–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaver DS, Matoba S, Ogrydziak DM (1992) A mutation in the signal recognition particle 7S RNA of the yeast Yarrowia lipolytica preferentially affects synthesis of the alkaline extracellular protease: in vivo evidence for translational arrest. J Cell Biol 116:605–616

    Article  CAS  PubMed  Google Scholar 

  • Young BP, Craven RA, Reid PJ, Willer M, Stirling CJ (2001) Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J 20:262–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JC, Andrews DW (1996) The signal recognition particle receptor a-subunit assembles co-translationally on the endoplasmic reticulum membrane during mRNA-encoded translation pause in vitro. EMBO J 15:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JC, Ursini J, Legate KR, Miller JD, Walter P, Andrews DW (1995) An amino-terminal domain containing hydrophobic and hydrophilic sequences binds the signal recognition particle receptor α subunit to the β subunit on the endoplasmic reticulum membrane. J Biol Chem 270:15650–15657

    Article  CAS  PubMed  Google Scholar 

  • Zelazny A, Seluanov A, Cooper A, Bibi E (1997) The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide. Proc Natl Acad Sci U S A 94:6025–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ, Aro EM (1999) Co-translational assembly of the D1 protein into photosystem II. J Biol Chem 274:16062–16067

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Paakkarinen V, van Wijk KJ, Aro EM (2000) Biogenesis of the chloroplast-encoded D1 protein: regulation of translation elongation, insertion, and assembly into photosystem II. Plant Cell 12:1769–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Paakkarinen V, Suorsa M, Aro EM (2001) A SecY homologue is involved in chloroplast-encoded D1 protein biogenesis. J Biol Chem 276:37809–37814

    Article  CAS  PubMed  Google Scholar 

  • Zheng N, Gierasch LM (1997) Domain interaction in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol Cell 1:79–87

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Nicchitta CV (1999) Structural determinants for signal sequence function in the mammalian endoplasmic reticulum. J Biol Chem 274:36623–36630

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann R (1998) The role of molecular chaperones in protein transport into the mammalian endoplasmic reticulum. Biol Chem 379:275–282

    CAS  PubMed  Google Scholar 

  • Zopf D, Bernstein HD, Johnson AE, Walter P (1990) The methionine-rich domain of the 54 kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J 9: 4511–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zopf D, Bernstein HD, Walter P (1993) GTPase domain of the 54 k subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. J Cell Biol 120:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Zwieb C (1992) Recognition of a tetranucleotide loop of signal recognition particle RNA by protein SRP 19. J Biol Chem 267:15650–15656

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-G. Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Koch, HG., Moser, M., Müller, M. (2003). Signal recognition particle-depencent protein targeting, universal to all kingdoms of life. In: Amara, S.G., et al. Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-002-0002-9

Download citation

  • DOI: https://doi.org/10.1007/s10254-002-0002-9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00228-4

  • Online ISBN: 978-3-540-36207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics