Skip to main content
Log in

A variational approach to complex Monge-Ampère equations

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We show that degenerate complex Monge-Ampère equations in a big cohomology class of a compact Kähler manifold can be solved using a variational method, without relying on Yau’s theorem. Our formulation yields in particular a natural pluricomplex analogue of the classical logarithmic energy of a measure. We also investigate Kähler-Einstein equations on Fano manifolds. Using continuous geodesics in the closure of the space of Kähler metrics and Berndtsson’s positivity of direct images, we extend Ding-Tian’s variational characterization and Bando-Mabuchi’s uniqueness result to singular Kähler-Einstein metrics. Finally, using our variational characterization we prove the existence, uniqueness and convergence as k→∞ of k-balanced metrics in the sense of Donaldson both in the (anti)canonical case and with respect to a measure of finite pluricomplex energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. D. Aleksandrov, On the theory of mixed volumes of convex bodies III: Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sb., 3 (1938), 27–44 (Russian). [English translation available in Selected Works Part I: Selected Scientific Papers, Gordon and Breach].

    Google Scholar 

  2. H. J. Alexander and B. A. Taylor, Comparison of two capacities in C n, Math. Z., 186 (1984), 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Aubin, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité, J. Funct. Anal., 57 (1984), 143–153.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bando and T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in T. Oda (ed.) Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, pp. 11–40, Kinokuniya, Tokyo, 1987.

    Google Scholar 

  5. E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Bedford and B. A. Taylor, Fine topology, Šilov boundary, and (dd c)n, J. Funct. Anal., 72 (1987), 225–251.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Benelkourchi, V. Guedj, and A. Zeriahi, Plurisubharmonic functions with weak singularities, in Complex Analysis and Digital Geometry, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist, vol. 86, pp. 57–74, Uppsala Universitet, Uppsala, 2009.

    Google Scholar 

  8. R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., 131 (2009), 1485–1524.

    Article  MATH  Google Scholar 

  9. R. Berman and S. Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., 181 (2010), 337–394.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Berman and J.-P. Demailly, Regularity of plurisubharmonic upper envelopes in big cohomology classes, in Perspectives in Analysis, Geometry, and Topology, Progr. Math., vol. 296, pp. 39–66, Birkhäuser/Springer, New York, 2012.

    Chapter  Google Scholar 

  11. R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Kähler-Ricci flow and Ricci iteration on log-Fano varieties, preprint (2011), arXiv:1111.7158.

  12. B. Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. Math., 169 (2009), 531–560.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differ. Geom., 81 (2009), 457–482.

    MathSciNet  MATH  Google Scholar 

  14. C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23 (2010), 405–468.

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Błocki, On geodesics in the space of Kähler metrics. Proceedings of the Conference in Geometry dedicated to Shing-Tung Yau (Warsaw, April 2009), in Advances in Geometric Analysis, Advanced Lectures in Mathematics, vol. 21, pp. 3–20, International Press, Somerville, 2012.

    Google Scholar 

  16. Z. Błocki and S. Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Am. Math. Soc., 135 (2007), 2089–2093.

    Article  MATH  Google Scholar 

  17. T. Bouche, Convergence de la métrique de Fubini-Study d’un fibré linéaire positif, Ann. Inst. Fourier, 40 (1990), 117–130.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super., 37 (2004), 45–76.

    MathSciNet  MATH  Google Scholar 

  19. S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math., 205 (2010), 199–262.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Catlin, The Bergman kernel and a theorem of Tian, in Analysis and Geometry in Several Complex Variables, Katata, 1997, Trends Math., pp. 1–23, Birkhäuser, Boston, 1999.

    Chapter  Google Scholar 

  21. U. Cegrell, Pluricomplex energy, Acta Math., 180 (1998), 187–217.

    Article  MathSciNet  MATH  Google Scholar 

  22. X. X. Chen, The space of Kähler metrics, J. Differ. Geom., 56 (2000), 189–234.

    MATH  Google Scholar 

  23. D. Coman, V. Guedj, and A. Zeriahi, Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., 259 (2008), 393–418.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebr. Geom., 1 (1992), 361–409.

    MathSciNet  MATH  Google Scholar 

  25. J. P. Demailly, Potential theory in several complex variables, survey available at http://www-fourier.ujf-grenoble.fr/~demailly/books.html.

  26. S. Dinew, Uniqueness and stability in \({\mathcal{E}}(X,\omega)\), J. Funct. Anal. 256 (2009), 2113–2122.

    Article  MathSciNet  MATH  Google Scholar 

  27. W.-Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann., 282 (1988), 463–471.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. K. Donaldson, Scalar curvature and projective embeddings I, J. Differ. Geom., 59 (2001), 479–522.

    MathSciNet  MATH  Google Scholar 

  29. S. K. Donaldson, Scalar curvature and projective embeddings II, Q. J. Math., 56 (2005), 345–356.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. K. Donaldson, Some numerical results in complex differential geometry, Pure Appl. Math. Q., 5 (2009), 571–618. Special Issue: In honor of Friedrich Hirzebruch. Part 1.

    MathSciNet  MATH  Google Scholar 

  31. S. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, in Y. Eliashberg et al. (eds.) Northern California Symplectic Geometry Seminar, AMS Translations Series 2, vol. 196, pp. 13–33, AMS, Providence, 1999.

    Google Scholar 

  32. P. Eyssidieux, V. Guedj, and A. Zeriahi, Singular Kähler-Einstein metrics, J. Am. Math. Soc., 22 (2009), 607–639.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., 15 (2005), 607–639.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., 250 (2007), 442–482.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Keller, Ricci iterations on Kähler classes, J. Inst. Math. Jussieu, 8 (2009), 743–768.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Kołodziej, The complex Monge-Ampère equation, Acta Math., 180 (1998), 69–117.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Lempert and L. Vivas, Geodesics in the space of Kähler metrics, preprint (2011), arXiv:1105.2188.

  38. N. Levenberg and B. A. Taylor, Comparison of capacities in C n, in Complex Analysis, Toulouse, 1983, Lecture Notes in Math., vol. 1094, pp. 162–172, Springer, Berlin, 1984.

    Google Scholar 

  39. T. Mabuchi, K-energy maps integrating Futaki invariants, Tohoku Math. J., 38 (1986), 575–593.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Mabuchi, Some symplectic geometry on compact Kähler manifolds, Osaka J. Math., 24 (1987), 227–252.

    MathSciNet  MATH  Google Scholar 

  41. N. Nakayama, Zariski Decompositions and Abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004, xiv+277 pp.

    Google Scholar 

  42. D. H. Phong, J. Song, J. Sturm, and B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds, Am. J. Math., 130 (2008), 1067–1085.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. J. Rainwater, A note on the preceding paper, Duke Math. J., 36 (1969), 799–800.

    Article  MathSciNet  MATH  Google Scholar 

  44. E. B. Saff and V. Totik, Logarithmic Potentials with Exterior Fields, Springer, Berlin, 1997 (with an appendix by T. Bloom).

    Google Scholar 

  45. S. Semmes, Complex Monge-Ampère and symplectic manifolds, Am. J. Math., 114 (1992), 495–550.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Siciak, Extremal plurisubharmonic functions in C n, Ann. Pol. Math., 39 (1981), 175–211.

    MathSciNet  MATH  Google Scholar 

  47. Y. T. Siu, Finite generation of canonical ring by analytic method, Sci. China Ser. A, 51 (2008), 481–502.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans C n, Bull. Soc. Math. Fr., 100 (1972), 353–408.

    MathSciNet  MATH  Google Scholar 

  49. J. Song and G. Tian, Canonical measures and Kähler-Ricci flow, J. Am. Math. Soc., 25 (2012), 303–353.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Song and G. Tian, The Kähler-Ricci flow through singularities, preprint (2009), arXiv:0909.4898.

  51. G. Székelyhidi and V. Tosatti, Regularity of weak solutions of a complex Monge-Ampère equation, Anal. PDE, 4 (2011), 369–378.

    Article  MathSciNet  Google Scholar 

  52. G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differ. Geom., 32 (1990), 99–130.

    MATH  Google Scholar 

  53. G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130 (1997), 239–265.

    Article  Google Scholar 

  54. G. Tian, Canonical Metrics in Kähler Geometry, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2000.

    Book  MATH  Google Scholar 

  55. H. Tsuji, Dynamical construction of Kähler-Einstein metrics, Nagoya Math. J., 199 (2010), 107–122.

    MathSciNet  MATH  Google Scholar 

  56. X. Wang, Canonical metrics on stable vector bundles, Commun. Anal. Geom., 13 (2005), 253–285.

    MATH  Google Scholar 

  57. S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Commun. Pure Appl. Math., 31 (1978), 339–411.

    Article  MATH  Google Scholar 

  58. S. Zelditch, Szegö kernels and a theorem of Tian, Int. Math. Res. Not., 6 (1998), 317–331.

    Article  MathSciNet  Google Scholar 

  59. A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J., 50 (2001), 671–703.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Boucksom.

About this article

Cite this article

Berman, R.J., Boucksom, S., Guedj, V. et al. A variational approach to complex Monge-Ampère equations. Publ.math.IHES 117, 179–245 (2013). https://doi.org/10.1007/s10240-012-0046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-012-0046-6

Keywords

Navigation