Skip to main content

Advertisement

Log in

SHF confers radioresistance in colorectal cancer by the regulation of mitochondrial DNA copy number

  • Research
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Altered mitochondrial function contributes greatly to pathogenesis and progression of colorectal cancer. In this study, we report a functional pool of Src homology 2 domain-containing F (SHF) in mitochondria controlling the response of colorectal cancer cells to radiation therapy. We found that elevated expression of SHF in cancer cells is essential for promoting mitochondrial function by increasing mitochondrial DNA copy number, thus reducing the sensitivity of colorectal cancer cells to radiation. Mechanistically, SHF binds to mitochondrial DNA and promotes POLG/SSBP1-mediated mitochondrial DNA synthesis. Importantly, SHF loss-mediated radiosensitization was phenocopied by depletion of mitochondrial DNA. Thus, our data demonstrate that mitochondrial SHF is an important regulator of radioresistance in colorectal cancer cells, identifying SHF as a promising therapeutic target to enhance radiotherapy efficacy in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

CRC transcriptome sequencing data and corresponding clinical data set were downloaded from TCGA (https://cancergenome.nih.gov, TCGA-COAD and TCGA-READ).

Abbreviations

CRC:

Colorectal cancer

TCGA:

The Cancer Genome Atlas

OCR:

Oxygen consumption rate

ECAR:

Extracellular acidification rate

MTS:

Mitochondrial targeting signal

NLS:

Nuclear localization sequence

SRB:

Sulforhodamine B

3’ UTR:

3′ Untranslated region

EV:

Empty vector

ddC:

2′,3′-Dideoxycytidine

PDO:

Patient-derived organoid

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Raza A, et al. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res CR. 2022;41:99. https://doi.org/10.1186/s13046-022-02318-0.

    Article  CAS  PubMed  Google Scholar 

  3. Brandi G, et al. Is post-transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases? Cancer Commun. 2020;40:461–4. https://doi.org/10.1002/cac2.12072.

    Article  Google Scholar 

  4. Rizzo A, et al. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol. 2020;12:1758835920936932. https://doi.org/10.1177/1758835920936932.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huerta S, Gao X, Saha D. Mechanisms of resistance to ionizing radiation in rectal cancer. Expert Rev Mol Diagn. 2009;9:469–80. https://doi.org/10.1586/erm.09.26.

    Article  CAS  PubMed  Google Scholar 

  6. Cui C, et al. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer. 2020;19:58. https://doi.org/10.1186/s12943-020-01180-y.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015;22:207–18. https://doi.org/10.1016/j.cmet.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  8. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98. https://doi.org/10.1038/nrc3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vander-Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. https://doi.org/10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chekulayev V, et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep. 2015;4:111–25. https://doi.org/10.1016/j.bbrep.2015.08.020.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaldma A, et al. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Int J Biochem Cell Biol. 2014;55:171–86. https://doi.org/10.1016/j.biocel.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  12. Sun X, et al. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct Target Ther. 2018;3:8. https://doi.org/10.1038/s41392-018-0011-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boyle KA, et al. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J Biol Chem. 2018;293:14891–904. https://doi.org/10.1074/jbc.RA117.001469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin CS, et al. Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol Rep. 2018;39:316–30. https://doi.org/10.3892/or.2017.6087.

    Article  CAS  PubMed  Google Scholar 

  15. Wen YA, et al. The mitochondrial retrograde signaling regulates Wnt signaling to promote tumorigenesis in colon cancer. Cell Death Differ. 2019;26:1955–69. https://doi.org/10.1038/s41418-018-0265-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Averbeck D, Rodriguez-Lafrasse C. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. 2021;22:11047. https://doi.org/10.3390/ijms222011047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grasso D, et al. Fitter mitochondria are associated with radioresistance in human head and neck SQD9 cancer cells. Front Pharmacol. 2020;11:263. https://doi.org/10.3389/fphar.2020.00263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nile DL, et al. Inhibition of glycolysis and mitochondrial respiration promotes radiosensitisation of neuroblastoma and glioma cells. Cancer Metab. 2021;9:24. https://doi.org/10.1186/s40170-021-00258-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qin LL, et al. CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair. Cell Rep. 2015;13:2056–63. https://doi.org/10.1016/j.celrep.2015.11.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, et al. Downregulation of mitochondrial single stranded DNA binding protein (SSBP1) Induces mitochondrial dysfunction and increases the radiosensitivity in non-small cell lung cancer cells. J Cancer. 2017;8:1400–9. https://doi.org/10.7150/jca.18170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCann E, O’Sullivan J, Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl Oncol. 2021;14:100905. https://doi.org/10.1016/j.tranon.2020.100905.

    Article  CAS  PubMed  Google Scholar 

  22. Barchiesi A, Vascotto C. Transcription, processing, and decay of mitochondrial RNA in health and disease. Int J Mol Sci. 2019;20:2221. https://doi.org/10.3390/ijms20092221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barshad G, Marom S, Cohen T, Mishmar D. Mitochondrial DNA transcription and its regulation: an evolutionary perspective. Trends Genet. 2018;34:682–92. https://doi.org/10.1016/j.tig.2018.05.009.

    Article  CAS  PubMed  Google Scholar 

  24. Clay-Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomic. 2009;36:125–31. https://doi.org/10.1016/S1673-8527(08)60099-5.

    Article  CAS  Google Scholar 

  25. Falkenberg M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem. 2018;62:287–96. https://doi.org/10.1042/Ebc20170100.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Falkenberg M, Gustafsson CM. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol. 2020;55:509–24. https://doi.org/10.1080/10409238.2020.1818684.

    Article  CAS  Google Scholar 

  27. Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acid Res. 2020;48:11244–58. https://doi.org/10.1093/nar/gkaa804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang M, et al. The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abf8631.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett. 2021;595:976–1002. https://doi.org/10.1002/1873-3468.14021.

    Article  CAS  PubMed  Google Scholar 

  30. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion. 2020;53:214–23. https://doi.org/10.1016/j.mito.2020.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia Y, et al. Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J Exp Med. 2019;216:1377–95. https://doi.org/10.1084/jem.20181394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujii M, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38. https://doi.org/10.1016/j.stem.2016.04.003.

    Article  CAS  PubMed  Google Scholar 

  33. Sato T, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72. https://doi.org/10.1053/j.gastro.2011.07.050.

    Article  CAS  PubMed  Google Scholar 

  34. Fujii M, Matano M, Nanki K, Sato T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc. 2015;10:1474–85. https://doi.org/10.1038/nprot.2015.088.

    Article  CAS  PubMed  Google Scholar 

  35. Filograna R, et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aav9824.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Venegas V, Halberg MC. Measurement of mitochondrial DNA copy number. Method Mol Biol. 2012;837:327–35. https://doi.org/10.1007/978-1-61779-504-6_22.

    Article  CAS  Google Scholar 

  37. Malayil L, et al. Metabolically-active bacteria in reclaimed water and ponds revealed using bromodeoxyuridine DNA labeling coupled with 16S rRNA and shotgun sequencing. Water Res. 2020;184:116185. https://doi.org/10.1016/j.watres.2020.116185.

    Article  CAS  PubMed  Google Scholar 

  38. Malayil L, Chattopadhyay S, Mongodin EF, Sapkota AR. Coupled DNA-labeling and sequencing approach enables the detection of viable-but-non-culturable Vibrio spp. in irrigation water sources in the Chesapeake Bay watershed. Environ Microbiome. 2021;16:13. https://doi.org/10.1186/s40793-021-00382-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao K, et al. Hypermethylation of hepatic mitochondrial ND6 provokes systemic insulin resistance. Adv Sci. 2021;8:2004507. https://doi.org/10.1002/advs.202004507.

    Article  CAS  Google Scholar 

  40. Chatterjee A, et al. MOF acetyl transferase regulates transcription and respiration in mitochondria. Cell. 2016;167:722. https://doi.org/10.1016/j.cell.2016.09.052.

    Article  CAS  PubMed  Google Scholar 

  41. Hansen KG, Herrmann JM. Transport of proteins into mitochondria. Protein J. 2019;38:330–42. https://doi.org/10.1007/s10930-019-09819-6.

    Article  CAS  PubMed  Google Scholar 

  42. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20:267–84. https://doi.org/10.1038/s41580-018-0092-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241:779–86. https://doi.org/10.1111/j.1432-1033.1996.00779.x.

    Article  CAS  PubMed  Google Scholar 

  44. Fukasawa Y, et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomic. 2015;14:1113–26. https://doi.org/10.1074/mcp.M114.043083.

    Article  CAS  Google Scholar 

  45. Lee J, et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem. 2005;280:40398–401. https://doi.org/10.1074/jbc.C500140200.

    Article  CAS  PubMed  Google Scholar 

  46. Li M, et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1. J Biol Chem. 2010;285:14871–81. https://doi.org/10.1074/jbc.M109.069591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000;275:16202–12. https://doi.org/10.1074/jbc.275.21.16202.

    Article  CAS  PubMed  Google Scholar 

  48. Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 2017;86:685–714. https://doi.org/10.1146/annurev-biochem-060815-014352.

    Article  CAS  PubMed  Google Scholar 

  49. Chiu HY, et al. Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus. 2018;9:530–42. https://doi.org/10.1080/19491034.2018.1523665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988;8:4048–54. https://doi.org/10.1128/mcb.8.10.4048-4054.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray M, et al. Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol. 2019;14:64. https://doi.org/10.1186/s13014-019-1268-2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kopinski PK, Singh LN, Zhang S, Lott MT, Wallace DC. Mitochondrial DNA variation and cancer. Nat Rev Cancer. 2021;21:431–45. https://doi.org/10.1038/s41568-021-00358-w.

    Article  CAS  PubMed  Google Scholar 

  53. Merrick BA, et al. HSP binding and mitochondrial localization of p53 protein in human HT1080 and mouse C3H10T1/2 cell lines. Biochem Biophys Acta. 1996;1297:57–68. https://doi.org/10.1016/0167-4838(96)00089-1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the TCGA Research Network for providing its platforms and valuable datasets.

Funding

This present study was funded by a grant from the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 82203425) and a grant from Shandong Province major science and technology innovation project (Grant no. 2019JZZY011008).

Author information

Authors and Affiliations

Authors

Contributions

ZZ, GM, GH, CJ, GJ, and JY were responsible for the concept and design of the original study. ZZ, GM, GH, GJ, and JY analyzed data and illustrated the figures for the manuscript. ZZ, GM, GW, WB, LC, and HQ performed the experiment. ZZ, GM, CJ, GJ, and JY wrote the paper with input from all authors. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Jie Guan or Yanhan Jia.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval and consent to participate

The tissue samples from patients used for the generation of organoids were approved by the ethical review committee of Shandong Cancer Hospital and Institute.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhenyu Zhu and Meihua Gong have contributed equally to this work and share first authorship.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Gong, M., Gong, W. et al. SHF confers radioresistance in colorectal cancer by the regulation of mitochondrial DNA copy number. Clin Exp Med 23, 2457–2471 (2023). https://doi.org/10.1007/s10238-022-00969-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00969-z

Keywords

Navigation