Skip to main content

Advertisement

Log in

DNA methylation profiles in cancer diagnosis and therapeutics

Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cancer initiation and proliferation is regulated by both epigenetic and genetic events with epigenetic modifications being increasingly identified as important targets for cancer research. DNA methylation catalyzed by DNA methyltransferases (DNMTs) is one of the essential epigenetic mechanisms that control cell proliferation, apoptosis, differentiation, cell cycle, and transformation in eukaryotes. Recent progress in epigenetics revealed a deeper understanding of the mechanisms of tumorigenesis and provided biomarkers for early detection, diagnosis, and prognosis in cancer patients. Although DNA methylation biomarker possesses potential contributing to precision medicine, there are still limitations to be overcome before it reaches clinical setting. Hence, the current status of DNA methylation biomarkers was reviewed and the future use in clinic was also predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

DNMTs:

DNA methyltransferases

FFPE:

Formalin-fixed paraffin-embedded

PCR:

Polymerase chain reaction

MSP:

Methylation-specific PCR

CRC:

Colorectal cancer

MWAS:

Methylome-wide association studies

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

SHOX2:

Stature homeobox 2

PITX2:

Paired-like homeodomain 2

SCC:

Squamous cell carcinoma

SCLC:

Small cell lung cancer

DNMTi:

DNMTs inhibitors

AZA:

Azacitidine

References

  1. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. doi:10.1101/gad.1787609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmidt-Wolf IG, Plass C, Byrd JC, Frevel K, Pietsch T, Waha A. Assessment of promoter methylation identifies PTCH as a putative tumor-suppressor gene in human CLL. Anticancer Res. 2016;36(9):4515–9.

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Li C, Mao H, Du Z, Chan WY, Murray P, et al. Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers. Sci Rep. 2016;6:26591. doi:10.1038/srep26591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reis AH, Vargas FR, Lemos B. Biomarkers of genome instability and cancer epigenetics. Tumour Biol. 2016;. doi:10.1007/s13277-016-5278-5.

    Google Scholar 

  5. Deng D, Liu Z, Du Y. Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet. 2010;71:125–76. doi:10.1016/B978-0-12-380864-6.00005-5.

    CAS  PubMed  Google Scholar 

  6. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Can Res. 2016;76(12):3446–50. doi:10.1158/0008-5472.CAN-15-3278.

    Article  CAS  Google Scholar 

  7. Craig JM, Bickmore WA. The distribution of CpG islands in mammalian chromosomes. Nat Genet. 1994;7(3):376–82. doi:10.1038/ng0794-376.

    Article  CAS  PubMed  Google Scholar 

  8. Man CH, Fung TK, Wan H, Cher CY, Fan A, Ng N, et al. Suppression of SOX7 by DNA methylation and its tumor suppressor function in acute myeloid leukemia. Blood. 2015;125(25):3928–36. doi:10.1182/blood-2014-06-580993.

    Article  CAS  PubMed  Google Scholar 

  9. Min HL, Kim J, Kim WH, Jang BG, Kim MA. Epigenetic silencing of the putative tumor suppressor gene GLDC (glycine dehydrogenase) in gastric carcinoma. Anticancer Res. 2016;36(1):179–87.

    CAS  PubMed  Google Scholar 

  10. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of tumors in mice by genomic hypomethylation. Science. 2003;300(5618):489–92. doi:10.1126/science.1083558.

    Article  CAS  PubMed  Google Scholar 

  11. Kawano H, Saeki H, Kitao H, Tsuda Y, Otsu H, Ando K, et al. Chromosomal instability associated with global DNA hypomethylation is associated with the initiation and progression of esophageal squamous cell carcinoma. Ann Surg Oncol. 2014;21(Suppl 4):S696–702. doi:10.1245/s10434-014-3818-z.

    Article  PubMed  Google Scholar 

  12. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28. doi:10.1038/nrg816.

    Article  CAS  PubMed  Google Scholar 

  13. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21. doi:10.1101/gad.947102.

    Article  CAS  PubMed  Google Scholar 

  14. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 2007;449(7159):248–51. doi:10.1038/nature06146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uysal F, Akkoyunlu G, Ozturk S. DNA methyltransferases exhibit dynamic expression during spermatogenesis. Reprod Biomed Online. 2016;33(6):690–702. doi:10.1016/j.rbmo.2016.08.022.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9. doi:10.1038/nm.2305.

    Article  CAS  PubMed  Google Scholar 

  17. Singal R, Wang SZ, Sargent T, Zhu SZ, Ginder GD. Methylation of promoter proximal-transcribed sequences of an embryonic globin gene inhibits transcription in primary erythroid cells and promotes formation of a cell type-specific methyl cytosine binding complex. J Biol Chem. 2002;277(3):1897–905. doi:10.1074/jbc.M105580200.

    Article  CAS  PubMed  Google Scholar 

  18. Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transcription? Trends Genet TIG. 1997;13(11):444–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89. doi:10.1146/annurev-med-111314-035900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan K, Kajino K, Momose S, Masaoka A, Sasahara K, Shiomi K, et al. Mesothelin (MSLN) promoter is hypomethylated in malignant mesothelioma, but its expression is not associated with methylation status of the promoter. Hum Pathol. 2010;41(9):1330–8. doi:10.1016/j.humpath.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  21. Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124(1):81–7. doi:10.1002/ijc.23849.

    Article  CAS  PubMed  Google Scholar 

  22. Hama R, Watanabe Y, Shinada K, Yamada Y, Ogata Y, Yoshida Y, et al. Characterization of DNA hypermethylation in two cases of peritoneal mesothelioma. Tumour Biol. 2012;33(6):2031–40. doi:10.1007/s13277-012-0462-8.

    Article  PubMed  Google Scholar 

  23. Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B, et al. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet. 2010;19(21):4176–88. doi:10.1093/hmg/ddq336.

    Article  CAS  PubMed  Google Scholar 

  24. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60(5):1528–34. doi:10.2337/db10-0979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lowe R, Rakyan VK. Correcting for cell-type composition bias in epigenome-wide association studies. Genome Med. 2014;6(3):23. doi:10.1186/gm540.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Montano CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP, et al. Measuring cell-type specific differential methylation in human brain tissue. Genome Biol. 2013;14(8):R94. doi:10.1186/gb-2013-14-8-r94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Moverare-Skrtic S, Mellstrom D, Vandenput L, Ehrich M, Ohlsson C. Peripheral blood leukocyte distribution and body mass index are associated with the methylation pattern of the androgen receptor promoter. Endocrine. 2009;35(2):204–10. doi:10.1007/s12020-009-9153-7.

    Article  CAS  PubMed  Google Scholar 

  28. Accomando WP, Wiencke JK, Houseman EA, Nelson HH, Kelsey KT. Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol. 2014;15(3):R50. doi:10.1186/gb-2014-15-3-r50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goltz D, Holmes EE, Gevensleben H, Sailer V, Dietrich J, Jung M, et al. CXCL12 promoter methylation and PD-L1 expression as prognostic biomarkers in prostate cancer patients. Oncotarget. 2016;. doi:10.18632/oncotarget.10786.

    Google Scholar 

  30. Yu M, Carter KT, Makar KW, Vickers K, Ulrich CM, Schoen RE, et al. MethyLight droplet digital PCR for detection and absolute quantification of infrequently methylated alleles. Epigenetics. 2015;10(9):803–9. doi:10.1080/15592294.2015.1068490.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lim AM, Candiloro IL, Wong N, Collins M, Do H, Takano EA, et al. Quantitative methodology is critical for assessing DNA methylation and impacts on correlation with patient outcome. Clin Epigenetics. 2014;6(1):22. doi:10.1186/1868-7083-6-22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Neri F, Incarnato D, Krepelova A, Parlato C, Oliviero S. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc. 2016;11(7):1191–205. doi:10.1038/nprot.2016.063.

    Article  CAS  PubMed  Google Scholar 

  33. Song X, Huang F, Liu J, Li C, Gao S, Wu W, et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res. 2017;. doi:10.1093/dnares/dsx016.

    PubMed  PubMed Central  Google Scholar 

  34. Kim KD, El Baidouri M, Jackson SA. Accessing epigenetic variation in the plant methylome. Brief Funct Genom. 2014;13(4):318–27. doi:10.1093/bfgp/elu003.

    Article  CAS  Google Scholar 

  35. Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, et al. A comparative epigenomic analysis of polyploidy-derived genes in soybean and common bean. Plant Physiol. 2015;168(4):1433–47. doi:10.1104/pp.15.00408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murphy PJ, Cairns BR. Genome-wide DNA methylation profiling in zebrafish. Methods Cell Biol. 2016;135:345–59. doi:10.1016/bs.mcb.2016.05.002.

    Article  CAS  PubMed  Google Scholar 

  37. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol. 2010;28(10):1097–105. doi:10.1038/nbt.1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen–the clinical genome resource. N Engl J Med. 2015;372(23):2235–42. doi:10.1056/NEJMsr1406261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song L, James SR, Kazim L, Karpf AR. Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem. 2005;77(2):504–10. doi:10.1021/ac0489420.

    Article  CAS  PubMed  Google Scholar 

  40. Kok RM, Smith DE, Barto R, Spijkerman AM, Teerlink T, Gellekink HJ, et al. Global DNA methylation measured by liquid chromatography-tandem mass spectrometry: analytical technique, reference values and determinants in healthy subjects. Clin Chem Lab Med. 2007;45(7):903–11. doi:10.1515/CCLM.2007.137.

    Article  CAS  PubMed  Google Scholar 

  41. Le T, Kim KP, Fan G, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem. 2011;412(2):203–9. doi:10.1016/j.ab.2011.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piyathilake CJ, Johanning GL, Frost AR, Whiteside MA, Manne U, Grizzle WE, et al. Immunohistochemical evaluation of global DNA methylation: comparison with in vitro radiolabeled methyl incorporation assay. Biotech Histochem. 2000;75(6):251–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kremer D, Metzger S, Kolb-Bachofen V, Kremer D. Quantitative measurement of genome-wide DNA methylation by a reliable and cost-efficient enzyme-linked immunosorbent assay technique. Anal Biochem. 2012;422(2):74–8. doi:10.1016/j.ab.2011.11.033.

    Article  CAS  PubMed  Google Scholar 

  44. Li W, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids. 2011;2011:870726. doi:10.4061/2011/870726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27(9):858–63. doi:10.1038/nbt.1559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Iliopoulos D, Guler G, Han SY, Johnston D, Druck T, McCorkell KA, et al. Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene. 2005;24(9):1625–33. doi:10.1038/sj.onc.1208398.

    Article  CAS  PubMed  Google Scholar 

  47. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013;10(10):949–55. doi:10.1038/nmeth.2632.

    Article  CAS  PubMed  Google Scholar 

  48. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41. doi:10.1038/nrg3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kagan J, Srivastava S, Barker PE, Belinsky SA, Cairns P. Towards clinical application of methylated DNA sequences as cancer biomarkers: a joint NCI’s EDRN and NIST workshop on standards, methods, assays, reagents and tools. Cancer Res. 2007;67(10):4545–9. doi:10.1158/0008-5472.CAN-06-2888.

    Article  CAS  PubMed  Google Scholar 

  50. Riggs AD, Jones PA. 5-Methylcytosine, gene regulation, and cancer. Adv Cancer Res. 1983;40:1–30.

    Article  CAS  PubMed  Google Scholar 

  51. Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Can Res. 2009;69(10):4112–5. doi:10.1158/0008-5472.CAN-09-0028.

    Article  CAS  Google Scholar 

  52. Martinez-Galan J, Torres B, Del Moral R, Munoz-Gamez JA, Martin-Oliva D, Villalobos M, et al. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol Ther. 2008;7(6):958–65.

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Gao F, Xia Y, Tang Y, Zhao W, Jin C, et al. Filtrating colorectal cancer associated genes by integrated analyses of global DNA methylation and hydroxymethylation in cancer and normal tissue. Sci Rep. 2016;6:31826. doi:10.1038/srep31826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Hu Y, Dong C, Lu H, Zhang C, Hu Q, et al. Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: involvement of DNA demethylation and nuclear factor kappaB. PLoS ONE. 2016;11(1):e0146138. doi:10.1371/journal.pone.0146138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Powrozek T, Krawczyk P, Kucharczyk T, Milanowski J. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: preliminary report. Med Oncol. 2014;31(4):917. doi:10.1007/s12032-014-0917-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Oh T, Kim N, Moon Y, Kim MS, Hoehn BD, Park CH, et al. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J Mol Diagn JMD. 2013;15(4):498–507. doi:10.1016/j.jmoldx.2013.03.004.

    Article  CAS  PubMed  Google Scholar 

  57. Fang C, Wei XM, Zeng XT, Wang FB, Weng H, Long X. Aberrant GSTP1 promoter methylation is associated with increased risk and advanced stage of breast cancer: a meta-analysis of 19 case-control studies. BMC Cancer. 2015;15:920. doi:10.1186/s12885-015-1926-1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wijetunga NA, Belbin TJ, Burk RD, Whitney K, Abadi M, Greally JM, et al. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia. Gynecol Oncol. 2016;. doi:10.1016/j.ygyno.2016.07.006.

    PubMed  PubMed Central  Google Scholar 

  59. Jung M, Putzer S, Gevensleben H, Meller S, Kristiansen G, Dietrich D. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant, and malignant ascites. Clin Epigenetics. 2016;8:24. doi:10.1186/s13148-016-0192-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Darwiche K, Zarogoulidis P, Baehner K, Welter S, Tetzner R, Wohlschlaeger J, et al. Assessment of SHOX2 methylation in EBUS-TBNA specimen improves accuracy in lung cancer staging. Ann Oncol. 2013;24(11):2866–70. doi:10.1093/annonc/mdt365.

    Article  CAS  PubMed  Google Scholar 

  61. Dietrich D, Hasinger O, Liebenberg V, Field JK, Kristiansen G, Soltermann A. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol. 2012;21(2):93–104. doi:10.1097/PDM.0b013e318240503b.

    Article  CAS  PubMed  Google Scholar 

  62. Dietrich D, Jung M, Puetzer S, Leisse A, Holmes EE, Meller S, et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLoS ONE. 2013;8(12):e84225. doi:10.1371/journal.pone.0084225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Payne SR. From discovery to the clinic: the novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics. 2010;2(4):575–85. doi:10.2217/epi.10.35.

    Article  CAS  PubMed  Google Scholar 

  64. Wick W, Weller M, van den Bent M, Sanson M, Weiler M, von Deimling A, et al. MGMT testing–the challenges for biomarker-based glioma treatment. Nat Rev Neurol. 2014;10(7):372–85. doi:10.1038/nrneurol.2014.100.

    Article  CAS  PubMed  Google Scholar 

  65. Yin AA, Zhang LH, Cheng JX, Dong Y, Liu BL, Han N, et al. The predictive but not prognostic value of MGMT promoter methylation status in elderly glioblastoma patients: a meta-analysis. PLoS ONE. 2014;9(1):e85102. doi:10.1371/journal.pone.0085102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang K, Wang XQ, Zhou B, Zhang L. The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: a meta-analysis. Fam Cancer. 2013;12(3):449–58. doi:10.1007/s10689-013-9607-1.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, Li J, Yu X, Li S, Zhang X, Mo Z, et al. APC gene hypermethylation and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet EJHG. 2013;21(9):929–35. doi:10.1038/ejhg.2012.281.

    Article  CAS  PubMed  Google Scholar 

  68. Wu T, Giovannucci E, Welge J, Mallick P, Tang WY, Ho SM. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: a meta-analysis. Br J Cancer. 2011;105(1):65–73. doi:10.1038/bjc.2011.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1287–97. doi:10.1056/NEJMoa1311194.

    Article  CAS  PubMed  Google Scholar 

  70. Melotte V, Lentjes MH, van den Bosch SM, Hellebrekers DM, de Hoon JP, Wouters KA, et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J Natl Cancer Inst. 2009;101(13):916–27. doi:10.1093/jnci/djp131.

    Article  CAS  PubMed  Google Scholar 

  71. Loh K, Chia JA, Greco S, Cozzi SJ, Buttenshaw RL, Bond CE, et al. Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development. Genes Chromosomes Cancer. 2008;47(6):449–60. doi:10.1002/gcc.20552.

    Article  CAS  PubMed  Google Scholar 

  72. Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst. 2005;97(15):1124–32. doi:10.1093/jnci/dji204.

    Article  CAS  PubMed  Google Scholar 

  73. Semaan A, van Ellen A, Meller S, Bergheim D, Branchi V, Lingohr P, et al. SEPT9 and SHOX2 DNA methylation status and its utility in the diagnosis of colonic adenomas and colorectal adenocarcinomas. Clin Epigenetics. 2016;8:100. doi:10.1186/s13148-016-0267-5.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez ME, Peterson EA, Privette LM, Loffreda-Wren JL, Kalikin LM, Petty EM. High SEPT9_v1 expression in human breast cancer cells is associated with oncogenic phenotypes. Can Res. 2007;67(18):8554–64. doi:10.1158/0008-5472.CAN-07-1474.

    Article  CAS  Google Scholar 

  75. Connolly D, Yang Z, Castaldi M, Simmons N, Oktay MH, Coniglio S, et al. Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res BCR. 2011;13(4):R76. doi:10.1186/bcr2924.

    Article  CAS  PubMed  Google Scholar 

  76. Hrasovec S, Hauptman N, Glavac D, Jelenc F, Ravnik-Glavac M. TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer. Dis Markers. 2013;34(2):93–104. doi:10.3233/DMA-120948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li JZ, Zhang Y, Wen B, Li M, Wang YJ. Ability of PITX2 methylation to predict survival in patients with prostate cancer. OncoTargets Therapy. 2015;8:3507–12. doi:10.2147/OTT.S83914.

    PubMed  PubMed Central  Google Scholar 

  78. Litovkin K, Joniau S, Lerut E, Laenen A, Gevaert O, Spahn M, et al. Methylation of PITX2, HOXD3, RASSF1 and TDRD1 predicts biochemical recurrence in high-risk prostate cancer. J Cancer Res Clin Oncol. 2014;140(11):1849–61. doi:10.1007/s00432-014-1738-8.

    Article  CAS  PubMed  Google Scholar 

  79. Kneip C, Schmidt B, Seegebarth A, Weickmann S, Fleischhacker M, Liebenberg V, et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol. 2011;6(10):1632–8. doi:10.1097/JTO.0b013e318220ef9a.

    Article  PubMed  Google Scholar 

  80. Schmidt B, Liebenberg V, Dietrich D, Schlegel T, Kneip C, Seegebarth A, et al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 2010;10:600. doi:10.1186/1471-2407-10-600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ilse P, Biesterfeld S, Pomjanski N, Fink C, Schramm M. SHOX2 DNA methylation is a tumour marker in pleural effusions. Cancer Genomics Proteomics. 2013;10(5):217–23.

    CAS  PubMed  Google Scholar 

  82. Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair. 2007;6(8):1079–99. doi:10.1016/j.dnarep.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  83. Chen YP, Hou XY, Yang CS, Jiang XX, Yang M, Xu XF, et al. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines. Tumour Biol. 2016;. doi:10.1007/s13277-016-4994-1.

    Google Scholar 

  84. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi:10.1056/NEJMoa043331.

    Article  CAS  PubMed  Google Scholar 

  85. Wang W, Zhang L, Wang Z, Yang F, Wang H, Liang T, et al. A three-gene signature for prognosis in patients with MGMT promoter-methylated glioblastoma. Oncotarget. 2016;. doi:10.18632/oncotarget.11726.

    Google Scholar 

  86. Cros J, Hentic O, Rebours V, Zappa M, Gille N, Theou-Anton N, et al. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23(8):625–33. doi:10.1530/ERC-16-0117.

    Article  CAS  PubMed  Google Scholar 

  87. Dunn J, Baborie A, Alam F, Joyce K, Moxham M, Sibson R, et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br J Cancer. 2009;101(1):124–31. doi:10.1038/sj.bjc.6605127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reifenberger G, Hentschel B, Felsberg J, Schackert G, Simon M, Schnell O, et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012;131(6):1342–50. doi:10.1002/ijc.27385.

    Article  CAS  PubMed  Google Scholar 

  89. van den Bent MJ, Dubbink HJ, Sanson M, van der Lee-Haarloo CR, Hegi M, Jeuken JW, et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol. 2009;27(35):5881–6. doi:10.1200/JCO.2009.24.1034.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93. doi:10.1038/ng1834.

    Article  CAS  PubMed  Google Scholar 

  91. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet TIG. 2000;16(4):168–74.

    Article  CAS  PubMed  Google Scholar 

  92. van der Velden PA, Metzelaar-Blok JA, Bergman W, Monique H, Hurks H, Frants RR, et al. Promoter hypermethylation: a common cause of reduced p16(INK4a) expression in uveal melanoma. Can Res. 2001;61(13):5303–6.

    Google Scholar 

  93. Pfeifer GP, Yoon JH, Liu L, Tommasi S, Wilczynski SP, Dammann R. Methylation of the RASSF1A gene in human cancers. Biol Chem. 2002;383(6):907–14. doi:10.1515/BC.2002.097.

    Article  CAS  PubMed  Google Scholar 

  94. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22(12):4309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Calipel A, Abonnet V, Nicole O, Mascarelli F, Coupland SE, Damato B, et al. Status of RASSF1A in uveal melanocytes and melanoma cells. Mol Cancer Res MCR. 2011;9(9):1187–98. doi:10.1158/1541-7786.MCR-10-0437.

    Article  CAS  PubMed  Google Scholar 

  96. Maat W, van der Velden PA, Out-Luiting C, Plug M, Dirks-Mulder A, Jager MJ, et al. Epigenetic inactivation of RASSF1a in uveal melanoma. Invest Ophthalmol Vis Sci. 2007;48(2):486–90. doi:10.1167/iovs.06-0781.

    Article  PubMed  Google Scholar 

  97. Venza M, Visalli M, Catalano T, Beninati C, Teti D, Venza I. DSS1 promoter hypomethylation and overexpression predict poor prognosis in melanoma and squamous cell carcinoma patients. Hum Pathol. 2017;60:137–46. doi:10.1016/j.humpath.2016.10.018.

    Article  CAS  PubMed  Google Scholar 

  98. Li FJ, Li LM, Zhang RH, Xu C, Zhou P, Long J, et al. The role of 5-hydroxymethylcytosine in melanoma. Melanoma Res. 2017;27(3):175–9. doi:10.1097/CMR.0000000000000349.

    Article  CAS  PubMed  Google Scholar 

  99. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;. doi:10.1038/nrg.2017.33.

    PubMed  Google Scholar 

  100. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003;17(3):637–41. doi:10.1038/sj.leu.2402834.

    Article  CAS  PubMed  Google Scholar 

  101. Huang H, Jiang X, Li Z, Li Y, Song CX, He C, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110(29):11994–9. doi:10.1073/pnas.1310656110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838–42. doi:10.1038/ng.391.

    Article  CAS  PubMed  Google Scholar 

  103. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi:10.1056/NEJMoa0810069.

    Article  PubMed  Google Scholar 

  104. Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell. 2015;57(4):662–73. doi:10.1016/j.molcel.2014.12.023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFalpha-p38-MAPK signaling axis. Can Res. 2015;75(18):3912–24. doi:10.1158/0008-5472.CAN-14-3208.

    Article  CAS  Google Scholar 

  106. Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32(5):663–9. doi:10.1038/onc.2012.67.

    Article  CAS  PubMed  Google Scholar 

  107. Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH, et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2012;2(3):568–79. doi:10.1016/j.celrep.2012.08.030.

    Article  CAS  PubMed  Google Scholar 

  108. Liu C, Liu L, Chen X, Shen J, Shan J, Xu Y, et al. Decrease of 5-hydroxymethylcytosine is associated with progression of hepatocellular carcinoma through downregulation of TET1. PLoS ONE. 2013;8(5):e62828. doi:10.1371/journal.pone.0062828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Muller T, Gessi M, Waha A, Isselstein LJ, Luxen D, Freihoff D, et al. Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol. 2012;181(2):675–83. doi:10.1016/j.ajpath.2012.04.017.

    Article  PubMed  CAS  Google Scholar 

  110. Orr BA, Haffner MC, Nelson WG, Yegnasubramanian S, Eberhart CG. Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS ONE. 2012;7(7):e41036. doi:10.1371/journal.pone.0041036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell. 2012;150(6):1135–46. doi:10.1016/j.cell.2012.07.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kudo Y, Tateishi K, Yamamoto K, Yamamoto S, Asaoka Y, Ijichi H, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 2012;103(4):670–6. doi:10.1111/j.1349-7006.2012.02213.x.

    Article  CAS  PubMed  Google Scholar 

  113. Rawluszko-Wieczorek AA, Siera A, Horbacka K, Horst N, Krokowicz P, Jagodzinski PP. Clinical significance of DNA methylation mRNA levels of TET family members in colorectal cancer. J Cancer Res Clin Oncol. 2015;141(8):1379–92. doi:10.1007/s00432-014-1901-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Frycz BA, Murawa D, Borejsza-Wysocki M, Marciniak R, Murawa P, Drews M, et al. Decreased expression of ten-eleven translocation 1 protein is associated with some clinicopathological features in gastric cancer. Biomed Pharmacother. 2014;68(2):209–12. doi:10.1016/j.biopha.2013.12.011.

    Article  CAS  PubMed  Google Scholar 

  115. Bai J, Zhang X, Hu K, Liu B, Wang H, Li A, et al. Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK. Oncotarget. 2016;. doi:10.18632/oncotarget.9866.

    Google Scholar 

  116. El-Deiry WS, Nelkin BD, Celano P, Yen RW, Falco JP, Hamilton SR, et al. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci USA. 1991;88(8):3470–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Patra SK, Patra A, Zhao H, Dahiya R. DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog. 2002;33(3):163–71.

    Article  CAS  PubMed  Google Scholar 

  118. Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003;9(12):4415–22.

    CAS  PubMed  Google Scholar 

  119. Girault I, Lerebours F, Amarir S, Tozlu S, Tubiana-Hulin M, Lidereau R, et al. Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res. 2003;9(4):1259–66.

    CAS  PubMed  Google Scholar 

  120. Oh BK, Kim H, Park HJ, Shim YH, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med. 2007;20(1):65–73.

    CAS  PubMed  Google Scholar 

  121. Melki JR, Warnecke P, Vincent PC, Clark SJ. Increased DNA methyltransferase expression in leukaemia. Leukemia. 1998;12(3):311–6.

    Article  CAS  PubMed  Google Scholar 

  122. Yang L, Rodriguez B, Mayle A, Park HJ, Lin X, Luo M, et al. DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer Cell. 2016;29(6):922–34. doi:10.1016/j.ccell.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Peters SL, Hlady RA, Opavska J, Klinkebiel D, Pirruccello SJ, Talmon GA, et al. Tumor suppressor functions of Dnmt3a and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia. 2014;28(5):1138–42. doi:10.1038/leu.2013.364.

    Article  CAS  PubMed  Google Scholar 

  124. Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet. 2011;43(6):595–600. doi:10.1038/ng.830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21(10):2205–10. doi:10.1093/hmg/dds035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mastroeni D, Chouliaras L, Grover A, Liang WS, Hauns K, Rogers J, et al. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer’s disease pathophysiology. PLoS ONE. 2013;8(1):e53349. doi:10.1371/journal.pone.0053349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi:10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15. doi:10.1038/ng.788.

    Article  CAS  PubMed  Google Scholar 

  129. Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774–83. doi:10.1038/leu.2014.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27. doi:10.1016/j.ccr.2009.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2011;44(1):23–31. doi:10.1038/ng.1009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Xu P, Hu G, Luo C, Liang Z. DNA methyltransferase inhibitors: an updated patent review. Exp Opin Ther Pat. 2016;. doi:10.1080/13543776.2016.1209488.

    Google Scholar 

  133. Khan C, Pathe N, Fazal S, Lister J, Rossetti JM. Azacitidine in the management of patients with myelodysplastic syndromes. Ther Adv Hematol. 2012;3(6):355–73. doi:10.1177/2040620712464882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Aimiuwu J, Wang H, Chen P, Xie Z, Wang J, Liu S, et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood. 2012;119(22):5229–38. doi:10.1182/blood-2011-11-382226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst. 2003;95(5):399–409.

    Article  CAS  PubMed  Google Scholar 

  136. Khan H, Vale C, Bhagat T, Verma A. Role of DNA methylation in the pathogenesis and treatment of myelodysplastic syndromes. Semin Hematol. 2013;50(1):16–37. doi:10.1053/j.seminhematol.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  137. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005;10(3):176–82. doi:10.1634/theoncologist.10-3-176.

    Article  CAS  PubMed  Google Scholar 

  138. Guo D, Myrdal PB, Karlage KL, O’Connell SP, Wissinger TJ, Tabibi SE, et al. Stability of 5-fluoro-2′-deoxycytidine and tetrahydrouridine in combination. AAPS PharmSciTech. 2010;11(1):247–52. doi:10.1208/s12249-010-9383-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G, et al. Preferential response of cancer cells to zebularine. Cancer Cell. 2004;6(2):151–8. doi:10.1016/j.ccr.2004.06.023.

    Article  CAS  PubMed  Google Scholar 

  140. Gore SD, Jones C, Kirkpatrick P. Decitabine. Nat Rev Drug Discov. 2006;5(11):891–2. doi:10.1038/nrd2180.

    Article  CAS  PubMed  Google Scholar 

  141. Coronel J, Cetina L, Pacheco I, Trejo-Becerril C, Gonzalez-Fierro A, de la Cruz-Hernandez E, et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol. 2011;28(Suppl 1):S540–6. doi:10.1007/s12032-010-9700-3.

    Article  PubMed  CAS  Google Scholar 

  142. Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005;280(49):40749–56. doi:10.1074/jbc.M505593200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010;31(11):536–46. doi:10.1016/j.tips.2010.08.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Datta J, Ghoshal K, Denny WA, Gamage SA, Brooke DG, Phiasivongsa P, et al. A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Can Res. 2009;69(10):4277–85. doi:10.1158/0008-5472.CAN-08-3669.

    Article  CAS  Google Scholar 

  145. Nandakumar V, Vaid M, Katiyar SK. (–)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis. 2011;32(4):537–44. doi:10.1093/carcin/bgq285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Can Res. 2006;66(5):2794–800. doi:10.1158/0008-5472.CAN-05-2821.

    Article  CAS  Google Scholar 

  147. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113(25):6411–8. doi:10.1182/blood-2008-07-170589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Song SH, Han SW, Bang YJ. Epigenetic-based therapies in cancer: progress to date. Drugs. 2011;71(18):2391–403. doi:10.2165/11596690-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  149. Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem. 2014;57(3):701–13. doi:10.1021/jm4012627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gros C, Fleury L, Nahoum V, Faux C, Valente S, Labella D, et al. New insights on the mechanism of quinoline-based DNA Methyltransferase inhibitors. J Biol Chem. 2015;290(10):6293–302. doi:10.1074/jbc.M114.594671.

    Article  CAS  PubMed  Google Scholar 

  151. Rilova E, Erdmann A, Gros C, Masson V, Aussagues Y, Poughon-Cassabois V, et al. Design, synthesis and biological evaluation of 4-amino-N-(4-aminophenyl)benzamide analogues of quinoline-based SGI-1027 as inhibitors of DNA methylation. ChemMedChem. 2014;9(3):590–601. doi:10.1002/cmdc.201300420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zielske SP. Epigenetic DNA methylation in radiation biology: on the field or on the sidelines? J Cell Biochem. 2015;116(2):212–7. doi:10.1002/jcb.24959.

    Article  CAS  PubMed  Google Scholar 

  153. Gnyszka A, Jastrzebski Z, Flis S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33(8):2989–96.

    CAS  PubMed  Google Scholar 

  154. Das DS, Ray A, Das A, Song Y, Tian Z, Oronsky B, et al. A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia. 2016;. doi:10.1038/leu.2016.96.

    Google Scholar 

  155. Li Y, Geng P, Jiang W, Wang Y, Yao J, Lin X, et al. Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumour Biol. 2014;35(5):4831–9. doi:10.1007/s13277-014-1634-5.

    Article  CAS  PubMed  Google Scholar 

  156. Kim JS, Kim SY, Lee M, Kim SH, Kim SM, Kim EJ. Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II alpha. Cancer Biol Ther. 2015;16(4):558–66. doi:10.1080/15384047.2015.1017154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. De Schutter H, Kimpe M, Isebaert S, Nuyts S. A systematic assessment of radiation dose enhancement by 5-Aza-2′-deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2009;73(3):904–12. doi:10.1016/j.ijrobp.2008.10.032.

    Article  PubMed  CAS  Google Scholar 

  158. Kim HJ, Kim JH, Chie EK, Young PD, Kim IA, Kim IH. DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat Oncol. 2012;7:39. doi:10.1186/1748-717X-7-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chan AT, Tao Q, Robertson KD, Flinn IW, Mann RB, Klencke B, et al. Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol. 2004;22(8):1373–81. doi:10.1200/JCO.2004.04.185.

    Article  CAS  PubMed  Google Scholar 

  160. Gravina GL, Festuccia C, Marampon F, Popov VM, Pestell RG, Zani BM, et al. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer. 2010;9:305. doi:10.1186/1476-4598-9-305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund from the National Natural Science Foundation of China (81372816) and Hubei Natural Science Foundation (2016CFB672).

Author information

Authors and Affiliations

Authors

Contributions

YP and YL contributed to conceptualization. YP and YL contributed to funding acquisition. BS and YL supervised the work. YP, GL, FZ, and BS wrote the original draft. YP, GL, and YL contributed to writing review and editing. YP and YL revised the article.

Corresponding authors

Correspondence to Bojin Su or Yirong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Liu, G., Zhou, F. et al. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 18, 1–14 (2018). https://doi.org/10.1007/s10238-017-0467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-017-0467-0

Keywords

Navigation