Skip to main content
Log in

Squeeze-film properties of synovial fluid and hyaluronate-based viscosupplements

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The rheological properties of synovial fluid and hyaluronate (HA) solutions have been studied using a variety of viscometers and rheometers. These devices measure the viscosity of the fluid’s resistance to shearing forces, which is useful when studying the lubrication and frictional properties of movable joints. Less commonly used is a squeeze-film fluid test, mechanistically similar to when two joint surfaces squeeze interposed fluid. In our study, we used squeeze-film tests to determine the rheological response of normal bovine synovial fluid and 10 mg/ml HA-based solutions, Hyalgan/Hyalovet, commercially available 500–700 kDa HA viscosupplements, and a 1000 kDa sodium hyaluronate (NaHy) solution. We found similar rheological responses (fluid thickness, viscosity, viscosity–pressure relationship) for all three fluids, though synovial fluid’s minimum squeeze-film thickness was slightly thicker. Squeeze-film loading speed did not affect these results. Different HA concentrations and molecular weights also did not have a significant or consistent effect on the squeeze-film responses. An unexpected result for the HA-solutions was a linear increase in minimum fluid-film thickness with increasing initial fluid-film thickness. This result was attributed to faster gelling of thicker HA-solutions, which formed at a lower squeeze-film strain and higher squeeze-film strain rate compared to thinner layers. Also included is a review of the literature on viscosity measurements of synovial fluid and HA solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Accardi M, Kini D, Cann M (2011) Experimental and numerical investigation of the behaviour of articular cartilage under shear loading—interstitial fluid pressurisation and lubrication mechanisms. Tribiol Int 44:565–578

    Article  Google Scholar 

  • Anadere I, Chmiel H, Laschner W (1979) Viscoelasticity of “normal” and pathological synovial fluid. Biorheology 16:179–184. https://doi.org/10.3233/bir-1979-16306

    Article  Google Scholar 

  • Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31:10–16. https://doi.org/10.1016/j.medengphy.2008.03.003

    Article  Google Scholar 

  • Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42:1163–1176. https://doi.org/10.1016/j.jbiomech.2009.04.040

    Article  Google Scholar 

  • Balazs E (1974) The physical properties of synovial fluid and the special role of hyaluronic acid. In: Helfet A (ed) Disorders of the knee. TB Lippicott, Philadelphia, pp 63–75

    Google Scholar 

  • Balazs EA et al (1991) Matrix engineering. Blood Coagul Fibrinolysis 2:173–178

    Article  Google Scholar 

  • Balazs EA, Watson D, Duff IF, Roseman S (1967) Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human fluids. Arthritis Rheum 10:357–376

    Article  Google Scholar 

  • Band PA et al (2015) Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthr Cartil 23:70–76

    Article  Google Scholar 

  • Banquy X, Lee DW, Das S, Hogan J, Israelachvili JN (2014) Shear-induced aggregation of mammalian synovial fluid components under boundary lubrication conditions. Adv Func Mater 24:3152–3161. https://doi.org/10.1002/adfm.201302959

    Article  Google Scholar 

  • Barus C (1893) Isothermals, isopiestics and isometrics relative to viscosity. Am J Sci Ser 3 45:87–96. https://doi.org/10.2475/ajs.s3-45.266.87

    Article  Google Scholar 

  • Batchelor AW, Stachowiak GW (1996a) Arthritis and the interacting mechanisms of synovial joint lubrication. Part I: operating conditions and environment. J Orthop Rheumatol 9:3–10

    Google Scholar 

  • Batchelor AW, Stachowiak GW (1996b) Arthritis and the interacting mechanisms of synovial joint lubrication. Part II: joint lubrication and its relation to arthritis. J Orthop Rheumatol 9:11–21

    Google Scholar 

  • Berriaud N, Milas M, Rinaudo M (1994) Rheological study on mixtures of different molecular weight hyaluronates International. J Biol Macromol 16:137–142

    Article  Google Scholar 

  • Bhuanantanondh P, Grecov D, Kwok E (2012) Rheololgical study of viscosupplements and synovial fluid in patients with osteoarthritis. J Med Biol Eng 32:12–16

    Article  Google Scholar 

  • Bloch B, Dintenfass L (1963) Rheological study of human synovial fluid. Aust N Z J Surg 33:108–113

    Article  Google Scholar 

  • Bollet AJ (1956) The intrinsic viscosity of synovial fluid hyaluronic acid. J Lab Clin Med 48:721–728

    Google Scholar 

  • Bonnevie E, Bonassar LJ (2020) A century of cartilage tribology research is informing lubrication therapies. J Biomech Eng. https://doi.org/10.1115/1.4046045

    Article  Google Scholar 

  • Bonnevie ED, Baro V, Wang L, Burris DL (2011) In-situ studies of cartilage microtribology: roles of speed and contact area. Tribol Lett 41:83–95

    Article  Google Scholar 

  • Bonnevie ED, Galesso D, Secchieri C, Cohen I, Bonassar LJ (2015) Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS ONE 10:e0143415. https://doi.org/10.1371/journal.pone.0143415

    Article  Google Scholar 

  • Bothner H, Wik O (1987) Rheology of hyaluronate. Acta Otolaryngol Suppl 442:25–30

    Article  Google Scholar 

  • Chernos M, Grecov D, Kwok E, Bebe S, Babsola O, Anastassiades T (2017) Rheological study of hyaluronic acid derivatives. Biomed Eng Lett 7:17–24. https://doi.org/10.1007/s13534-017-0010-y

    Article  Google Scholar 

  • Cpek P, Vrbka M, Rebenda D, Necas D, Krupka I (2020) Biotribology of synovial cartilage: a new method for visualization of lubricating film and simultaneous measurement of the friction coefficient. Materials 13:2075

    Article  Google Scholar 

  • Damen AHA, van Donkelaar CC, Cardinaels RM, Brandt JM, Schmidt TA, Ito K (2021) Proteoglycan 4 reduces friction more than other synovial fluid components for both cartilage-cartilage and cartilage-metal articulation. Osteoarthr Cartil. https://doi.org/10.1016/j.joca.2021.02.566

    Article  Google Scholar 

  • Das S, Banquy X, Zappone B, Greene GW, Jay GD, Israelachvili JN (2013) Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromol 14:1669–1677. https://doi.org/10.1021/bm400327a

    Article  Google Scholar 

  • Davies D (1966) Properties of synovial fluid. In: Symposium on lubrication and wear in living and artificial human joints. Institution of Mechanical Engineers 181(10):25–29

  • Dodero A, Williams R, Gagliardi S, Vicini S, Alloisio M, Castellano M (2018) A micro-rheological and rheological study of biopolymers solutions: hyaluronic acid. Carbohydr Polym 203:349–355. https://doi.org/10.1016/j.carbpol.2018.09.072

    Article  Google Scholar 

  • Dowson D, Unsworth A, Wright V (1970) Analysis of “Boosted Lubrication” in human joints. J Mech Eng Sci 12:364–369

    Article  Google Scholar 

  • Fam H, Bryant JT, Kontopoulou M (2007) Rheological properties of synovial fluids. Biorheology 44:59–74

    Google Scholar 

  • Feeney E, Galesso D, Secchieri C, Oliviero F, Ramonda R, Bonassar LJ (2020) Inflammatory and noninflammatory synovial fluids exhibit new and distinct tribological endotypes. J Biomech Eng. https://doi.org/10.1115/1.4047628

    Article  Google Scholar 

  • Fein RS (1966) Research report 3: are synovial joints squeeze-film lubricated? Proc Inst Mech Eng Conf Proc 181:125–128. https://doi.org/10.1243/pime_conf_1966_181_215_02

    Article  Google Scholar 

  • Ferguson J, Boyle JA, McSween RN, Jasani MK (1968) Observations on the flow properties of the synovial fluid from patients with rheumatoid arthritis. Biorheology 5:119–131. https://doi.org/10.3233/bir-1968-5204

    Article  Google Scholar 

  • Fouissac E, Milas M, Rinaudo M (1993) Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte. Macromolecules 26:6945–6951

    Article  Google Scholar 

  • Fraser JRE, Laurent TC, Laurent UBG (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33. https://doi.org/10.1046/j.1365-2796.1997.00170.x

    Article  Google Scholar 

  • Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ (2009) Boundary mode lubrication of articular cartilage by recombinant human lubricin. J Orthop Res 27:771–777

    Article  Google Scholar 

  • Greenwald RA, Moy WW (1980) Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum 23:455–463. https://doi.org/10.1002/art.1780230408

    Article  Google Scholar 

  • Guenther LE, Pyle BW, Turgeon TR, Bohm ER, Wyss UP, Schmidt TA, Brandt JM (2014) Biochemical analyses of human osteoarthritic and periprosthetic synovial fluid. Proc Inst Mech Eng Part H J Eng Med 228:127–139

    Article  Google Scholar 

  • Hamrock B (1994) Fundamentals of fluid film lubrication, 1st edn. McGraw-Hill Inc, New York

    Google Scholar 

  • Higginson GR, Norman R (1974a) The lubrication of porous elastic solids with reference to the functioning of human joints. J Mech Eng Sci 16:250–257

    Article  Google Scholar 

  • Higginson GR, Norman R (1974b) A model investigation of squeeze-film lubrication in animal joints. Phys Med Biol 19:785–792

    Article  Google Scholar 

  • Hlavacek M (1993) The role of synovial fluid filtration by cartilage in lubrication of synovial joints–II. Squeeze-film lubrication: homogeneous filtration. J Biomech 26:1151–1160. https://doi.org/10.1016/0021-9290(93)90063-k

    Article  Google Scholar 

  • Hlavacek M (1995) The role of synovial fluid filtration by cartilage in lubrication of synovial joints–IV. Squeeze-film lubrication: the central film thickness for normal and inflammatory synovial fluids for axial symmetry under high loading conditions. J Biomech 28:1199–1205. https://doi.org/10.1016/0021-9290(94)00178-7

    Article  Google Scholar 

  • Hlavacek M (1999) Lubrication of the human ankle joint in walking with the synovial fluid filtrated by the cartilage with the surface zone worn out: steady pure sliding motion. J Biomech 32:1059–1069. https://doi.org/10.1016/S0021-9290(99)00095-0

    Article  Google Scholar 

  • Hlavacek M (2000) Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out. J Biomech 33:1415–1422. https://doi.org/10.1016/s0021-9290(00)00109-3

    Article  Google Scholar 

  • Hlavacek M (2001) The thixotropic effect of the synovial fluid in squeeze-film lubrication of the human hip joint. Biorheology 38:319–334

    Google Scholar 

  • Hlavacek M (2002) The influence of the acetabular labrum seal, intact articular superficial zone and synovial fluid thixotropy on squeeze-film lubrication of a spherical synovial joint. J Biomech 35:1325–1335

    Article  Google Scholar 

  • Hou J, Mow V, Lai W, Holmes M (1992) An analysis of the squeeze-film lubrication mechanism for articular cartilage. J Biomech 25:247–259

    Article  Google Scholar 

  • Hunter DJ (2015) Viscosupplementation for osteoarthritis of the knee. N Engl J Med 372:1040–1047. https://doi.org/10.1056/NEJMct1215534

    Article  Google Scholar 

  • Jay GD, Tantravahi U, Britt DE, Barrach HJ, Cha CJ (2001) Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res 19:677–687

    Article  Google Scholar 

  • Jebens EH, Monk-Jones ME (1959) On the viscosity and pH of synovial fluid and the pH of blood. J Bone Joint Surg Br 41-B:388–400

    Article  Google Scholar 

  • Johnston JP (1955) The viscosity of normal and pathological human synovial fluids. Biochem J 59:633

    Article  Google Scholar 

  • Katta J, Jin Z, Ingham E, Fisher J (2008) Biotribology of articular cartilage: a review of the recent advances. Med Eng Phys 30:1349–1363

    Article  Google Scholar 

  • Kim J, Chang J-Y, Kim Y-Y, Kim M-J, Kho H-S (2018) Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase. Arch Oral Biol 89:55–64. https://doi.org/10.1016/j.archoralbio.2018.02.007

    Article  Google Scholar 

  • King R (1966) A rheological measurement of three synovial fluids. Rheol Acta 5:41–44

    Article  Google Scholar 

  • Knox P, Levick JR, McDonald JN (1988) Synovial fluid: its mass, macromolecular content and pressure in major limb joints of the rabbit. Q J Exp Physiol 73:33–45. https://doi.org/10.1113/expphysiol.1988.sp003121

    Article  Google Scholar 

  • Kosinska MK et al (2015) Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS ONE 10:e0125192. https://doi.org/10.1371/journal.pone.0125192

    Article  Google Scholar 

  • Krishnan R, Kopacz M, Ateshian GA (2004) Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res 22:565–570

    Article  Google Scholar 

  • Kwiecinski JJ, Dorosz SG, Ludwig TE, Abubacker S, Cowman MK, Schmidt TA (2011) The effect of molecular weight on Hyaluronan’s cartilage boundary lubricating ability–alone and in combination with proteoglycan 4. Osteoarthr Cartil 19:1356–1362

    Article  Google Scholar 

  • Lai W, Mow V (1978) Ultrafiltration of synovial fluid by cartilage. J Eng Mech Div ASCE 104:79–96

    Article  Google Scholar 

  • Lapcik L Jr, Omelka L, Kubena K, Galatik A, Kello V (1990) Photodegradation of hyaluronic acid and of the vitreous body. Gen Physiol Biophys 9:419–429

    Google Scholar 

  • Leeuwen H (2009) The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements. Proc Inst Mech Eng Part J J Eng Tribol 223:1143–1163. https://doi.org/10.1243/13506501JET504

    Article  Google Scholar 

  • Levick JR, Fionnualla M, Price FM, Mason RM (1996) Synovial matrix-synovial fluid system of joints. In: Comper W (ed) Extracellular matrix. Tissue function, vol 1. Hardwood Academic, Amsterdam, pp 328–377

    Google Scholar 

  • Levine MG, Kling DH (1956) Rheologic studies on synovial fluid. J Clin Invest 35:1419–1427. https://doi.org/10.1172/JCI103399

    Article  Google Scholar 

  • Lin J, Chu L, Liang L (2013) Effects of viscosity-pressure dependency on the non-Newtonian squeeze film of parallel circular plates. Lubr Sci 25:1–9

    Article  Google Scholar 

  • Linn FC, Radin EL (1968) Lubrication of animal joints. 3. The effect of certain chemical alterations of the cartilage and lubricant. Arthritis Rheum 11:674–682. https://doi.org/10.1002/art.1780110510

    Article  Google Scholar 

  • Ludwig TE, McAllister JR, Lun V, Wiley JP, Schmidt TA (2012) Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: restoration through proteoglycan 4 supplementation. Arthritis Rheum 64:3963–3971. https://doi.org/10.1002/art.34674

    Article  Google Scholar 

  • Mabuchi K, Tsukamoto Y, Obara T, Yamaguchi T (1994) The effect of additive hyaluronic acid on animal joints with experimentally reduced lubricating ability. J Biomed Mater Res 28:865–870. https://doi.org/10.1002/jbm.820280805

    Article  Google Scholar 

  • Madkhali A, Chernos M, Fakhraei S, Grecov D, Kwok E (2016a) Osteoarthritic synovial fluid and correlations with protein concentration. Part 2: extensional rheology. Biorheology 53:123–136. https://doi.org/10.3233/BIR-15086

    Article  Google Scholar 

  • Madkhali A, Chernos M, Grecov D, Kwok E (2016b) Osteoarthritic synovial fluid rheology and correlations with protein concentration. Part 1. Biorheology 53:111–122. https://doi.org/10.3233/BIR-15078

    Article  Google Scholar 

  • Matheson A, Regmi SC, Martin-Alarcon L, Jay GD, Scott WM, Schmidt TA (2020) Proteoglycan-4 and hyaluronan composition in synovial fluid and serum from clinical equine subjects: relationship to cartilage boundary lubrication and viscosity of synovial fluid. Connect Tissue Res. https://doi.org/10.1080/03008207.2020.1751140

    Article  Google Scholar 

  • Matheson AR, Sheehy EJ, Jay GD, Scott WM, O’Brien FJ, Schmidt TA (2021) The role of synovial fluid constituents in the lubrication of collagen-glycosaminoglycan scaffolds for cartilage repair. J Mech Behav Biomed Mater 118:104445. https://doi.org/10.1016/j.jmbbm.2021.104445

    Article  Google Scholar 

  • Miyazaki T, Yomota C, Okada S (1998) Change in molecular weight of hyaluronic acid during measurement with a cone-plate rotational viscometer. J Appl Polym Sci 67:2199–2206. https://doi.org/10.1002/(sici)1097-4628(19980328)67:13%3c2199::aid-app10%3e3.0.co;2-w

    Article  Google Scholar 

  • More S, Kotiya A, Kotia A, Ghosh SK, Spyrou LA, Sarris IE (2020) Rheological properties of synovial fluid due to viscosupplements: a review for osteoarthritis remedy. Comput Methods Programs Biomed 196:105644. https://doi.org/10.1016/j.cmpb.2020.105644

    Article  Google Scholar 

  • Moore D (1965) A review of squeeze films. Wear 8:245–263

    Article  Google Scholar 

  • Moore AC, Burris DL (2017) Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr Cartil 25:99–107. https://doi.org/10.1016/j.joca.2016.09.018

    Article  Google Scholar 

  • Murakami T, Higaki H, Sawae Y, Ohtsuki N, Moriyama S, Nakanishi Y (1998) Adaptive multimode lubrication in natural synovial joints and artificial joints. Proc Inst Mech Eng Part H J Eng Med 212:23–35

    Article  Google Scholar 

  • Naduvinamani NB, Savitramma GK (2013) Squeeze film lubrication between rough poroelastic rectangular plates with micropolar fluid: a special reference to the study of synovial joint lubrication. ISRN Tribol 2013:9. https://doi.org/10.5402/2013/431508

    Article  Google Scholar 

  • Nicholls M, Manjoo A, Shaw P, Niazi F, Rosen J (2018) A comparison between rheological properties of intra-articular hyaluronic acid preparations and reported human synovial fluid. Adv Ther 35:523–530. https://doi.org/10.1007/s12325-018-0688-y

    Article  Google Scholar 

  • Oates KM, Krause WE, Jones RL, Colby RH (2006) Rheopexy of synovial fluid and protein aggregation. J R Soc Interface 3:167–174

    Article  Google Scholar 

  • Ogston AG, Stanier JE (1953) The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J Physiol 119:244–252

    Article  Google Scholar 

  • O’Neill PLO, Stachowiak GW, Carroll GJ (1989) The elastohydrodynamic properties of arthritic synovial fluid. J Orthop Rheumatol 2:219–230

    Google Scholar 

  • Palfrey AJ, White JB (1968) The viscosity of synovial fluid during oscillatory movement. Biorheology 5:189–198. https://doi.org/10.3233/bir-1968-5301

    Article  Google Scholar 

  • Popov VL, Poliakov AM, Pakhaliuk VI (2021) Synovial joints. Tribology, regeneration regenerative rehabilitation and arthroplasty. Lubricants 9:15

    Article  Google Scholar 

  • Prieto JG, Pulido MM, Zapico J, Molina AJ, Gimeno M, Coronel P, Alvarez AI (2005) Comparative study of hyaluronic derivatives: rheological behaviour, mechanical and chemical degradation. Int J Biol Macromol 35:63–69. https://doi.org/10.1016/j.ijbiomac.2004.12.003

    Article  Google Scholar 

  • Radulescu AV, Radulescu I (2012) Comparative methods for measuring the rheological properties of fresh and used oils. J Balk Tribol Assoc 18:271–277

    Google Scholar 

  • Ragan C, Meyer K (1949) The hyaluronic acid of synovial fluid in rheumatoid arthritis. J Clin Invest 28:56–59. https://doi.org/10.1172/JCI102053

    Article  Google Scholar 

  • Rebenda D, Vrbka M, Cipek P, Toropitsyn E, Necas D, Pravda M, Hartl M (2020) On the dependence of rheology of hyaluronic acid solutions and frictional behavior of articular cartilage. Materials (basel). https://doi.org/10.3390/ma13112659

    Article  Google Scholar 

  • Reimann I (1976) Pathological human synovial fluids. Viscosity and boundary lubricating properties. Clin Orthop Relat Res 119:237–241

    Google Scholar 

  • Reimann I, Stougaard J, Northeved A (1975) Measurement of the viscosity of synovial fluid. Scand J Rheumatol 4:43–48

    Article  Google Scholar 

  • Reynolds O (1886) On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos Trans R Soc Lond 177:157–234. https://doi.org/10.1098/rstl.1886.0005

    Article  MATH  Google Scholar 

  • Roberts AD (1971) Role of electrical repulsive forces in synovial fluid. Nature 231:434–436. https://doi.org/10.1038/231434a0

    Article  Google Scholar 

  • Roberts AD (1977) Studies of lubricated rubber friction: Part 1—coupling optical observations to friction measurements. Tribol Int 10:115–122. https://doi.org/10.1016/0301-679X(77)90120-7

    Article  Google Scholar 

  • Ruggiero A, Gomez E, D’Amato R (2011) Approximate analytical model for the squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage. Tribol Lett 41:337–343. https://doi.org/10.1007/s11249-010-9710-5

    Article  Google Scholar 

  • Rybicki EF, Glaeser WA, Strenkowski JS, Tamm MA (1979) Effects of cartilage stiffness and viscosity on a nonporous compliant bearing lubrication model for living joints. J Biomech 12:403–409

    Article  Google Scholar 

  • Sargent LB (1983) Pressure-viscosity coefficients of liquid lubricants. ASLE Trans 26:1–10. https://doi.org/10.1080/05698198308981471

    Article  Google Scholar 

  • Sawae Y, Murakami T, Higaki H, Moriyama S (1996) Lubrication property of total knee prothesis with PVA hydrogel layer as artificial cartilage. Trans Jpn Soc Mech Eng Ser C 39:356–364

    Google Scholar 

  • Schmidt T, Lindley K, Su J, Soloveychik V, Block J, Kuettner K (2001) Schumacher, B (2001) Superficial zone protein (SZP) is an abundant glycoprotein in human synovial fluid and serum. Trans Orthop Res Soc 26:82

    Google Scholar 

  • Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL (2007) Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum 56:882–891. https://doi.org/10.1002/art.22446

    Article  Google Scholar 

  • Schumacher BL, Hughes CE, Kuettner KE, Caterson B, Aydelotte MB (1999) Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res 17:110–120

    Article  Google Scholar 

  • Schurz J, Ribitsch V (1987) Rheology of synovial fluid. Biorheology 24:385–399. https://doi.org/10.3233/bir-1987-24404

    Article  Google Scholar 

  • Shimada E, Matsumura G (1975) Viscosity and molecular weight of hyaluronic acids. J Biochem 78:513–517. https://doi.org/10.1093/oxfordjournals.jbchem.a130935

    Article  Google Scholar 

  • Shimada E, Matsumura G (1992) Determination of Stokes radii and molecular masses of sodium hyaluronates by Sepharose gel chromatography. J Chromatogr A 627:43–50

    Article  Google Scholar 

  • Stachowiak GW, Batchelor AW (2005) Engineering tribology, 3rd edn. Elsevier

    Google Scholar 

  • Stafford CT, Niedermeier W, Holley HL, Pigman W (1964) Studies on the concentration and intrinsic viscosity of hyaluronic acid in synovial fluids of patients with rheumatic diseases. Ann Rheum Dis 23:152–157. https://doi.org/10.1136/ard.23.2.152

    Article  Google Scholar 

  • Su JL et al (2001) Detection of superficial zone protein in human and animal body fluids by cross-species monoclonal antibodies specific to superficial zone protein. Hybridoma 20:149–157

    Article  Google Scholar 

  • Swann DA, Silver FH, Slayter HS, Stafford W, Shore E (1985) The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem J 225:195–201

    Article  Google Scholar 

  • Tandon P, Jaggi S (1979) A polar model for synovial fluid with reference to human joints. Int J Mech Sci 21:161–169

    Article  MATH  Google Scholar 

  • Tandon PN, Nirmala P, Pal TS, Agarwal R (1988) Rheological study of lubricant gelling in synovial joints during articulation. Appl Math Model 12:72–77. https://doi.org/10.1016/0307-904X(88)90025-X

    Article  MATH  Google Scholar 

  • Tirtaatmadja V, Boger DV, Fraser JRE (1984) The dynamic and steady shear properties of synovial fluid and of the components making up synovial fluid. Rheol Acta 23:311–321

    Article  Google Scholar 

  • Unsworth A (1991) Tribology of human and artificial joints. Proc Inst Mech Eng H J Eng Med 205:163–172. https://doi.org/10.1243/PIME_PROC_1991_205_287_02

    Article  Google Scholar 

  • Walker PS, Dowson D, Longfield MD, Wright V (1968) “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann Rheum Dis 27:512–520

    Article  Google Scholar 

  • Wang H, Ateshian GA (1997) The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J Biomech 30:771–776

    Article  Google Scholar 

  • Wik O, Bengt HB (2002) Rheology of hyaluronan products. In: Kennedy JF, Phillips GO, Williams PA (eds) Hyaluronan. Woodhead Publishing, Sawston, pp 201–204. https://doi.org/10.1533/9781845693121.201

    Chapter  Google Scholar 

  • Yanaki T, Yamaguchi T (1990) Temporary network formation of hyaluronate under a physiological condition. 1. Molecular-weight dependence. Biopolymers 30:415–425. https://doi.org/10.1002/bip.360300319

    Article  Google Scholar 

  • Yu J, Banquy X, Greene GW, Lowrey DD, Israelachvili JN (2012) The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus. Langmuir 28:2244–2250

    Article  Google Scholar 

  • Zadorozhnaya E, Levanov I, Oskina O (2016) Study of HTHS viscosity of modern motor oils. Procedia Eng 150:602–606. https://doi.org/10.1016/j.proeng.2016.07.051

    Article  Google Scholar 

  • Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN (2007) Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys J 92:1693–1708. https://doi.org/10.1529/biophysj.106.088799

    Article  Google Scholar 

  • Zappone B, Greene GW, Oroudjev E, Jay GD, Israelachvili JN (2008) Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. Langmuir 24:1495–1508

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR059203 (PAT). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

Grant Number AR059203 (PAT) from the National Institutes of Health—National Institute of Arthritis and Musculoskeletal Skin Diseases.

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, data analysis, mathematical modeling and manuscript preparation were performed by P.A. Torzilli. Experimental testing was performed by R. Hubbard. Data collection and reduction were performed by I. Pecorari. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Peter A. Torzilli.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 499 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torzilli, P.A., Hubbard, R.B. & Pecorari, I.L. Squeeze-film properties of synovial fluid and hyaluronate-based viscosupplements. Biomech Model Mechanobiol 20, 1919–1940 (2021). https://doi.org/10.1007/s10237-021-01485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01485-x

Keywords

Navigation