Skip to main content

Advertisement

Log in

Tethering, evagination, and vesiculation via cell–cell interactions in microvascular flow

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Vesiculation is a ubiquitous process undergone by most cell types and serves a variety of vital cell functions; vesiculation from erythrocytes, in particular, is a well-known example and constitutes a self-protection mechanism against premature clearance, inter alia. Herein, we explore a paradigm that red blood cell derived vesicles may form within the microvascular, in intense shear flow, where cells become adhered to either other cells or the extracellular matrix, by forming tethers or an evagination. Adherence may be enhanced, or caused, by diseased states or chemical anomalies as are discussed herein. The mechanisms for such processes are detailed via numerical simulations that are patterned directly from video-recorded cell microflow within the splenic venous sinus (MacDonald et al. 1987), as included, e.g., as Supplementary Material. The mechanisms uncovered highlight the necessity of accounting for remodeling of the erythrocyte’s membrane skeleton and, specifically, for the time scales associated with that process that is an integral part of cell deformation. In this way, the analysis provides pointed, and vital, insights into the notion of what the, often used phrase, cell deformability actually entails in a more holistic manner. The analysis also details what data are required to make further quantitative descriptions possible and suggests experimental pathways for acquiring such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R (2013) Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 4:365

    Google Scholar 

  • Alapan Y, Little JA, Gurkan U (2014) Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Sci Rep 4:7173–7180

    Google Scholar 

  • Al-Thani AM, Voss SC, Al-Menhali AS, Barcaru A, Horvatovich P, Jaganjac M (2018) Whole blood storage in CPDA1 blood bags alters erythrocyte membrane proteome. Oxid Med Cellular Longevity 10:1155–1167

    Google Scholar 

  • Asaro RJ, Q Zhu (2020) Vital Erythrocyte phenomena: what can theory, modeling, and simulation offer? Biomech Model Mechanobiol (to appear)

  • Asaro RJ, Zhu Q, Cabrales P (2018) Erythrocyte aging, protection via vesiculation: an analysis methodology via oscillatory flow. Front Physiol 9:1607

    Google Scholar 

  • Asaro RJ, Lin K, Zhu Q (2019) Mechanosensitivity occurs along the adhesome’s force train and affects traction stress. Biophys J 117:1599–1614

    Google Scholar 

  • Beutler E, Lichman MA, Coller BS, Kipps TJ (1995) Hemotology. McGraw Hill, New York

    Google Scholar 

  • Bishop MB, Lansing LS (1982) The Spleen: a correlative overview of normal and pathologic anatomy. Hum Pathol 13:334–342

    Google Scholar 

  • Bonomini M, Sirolli V, Gizza F, Di Stante S, Grilli A, Felaco M (2002) Enhanced adhesion of human uremic erythrocytes to vascular endothelium: role of phosphatidylserine exposure. Kidney Int 62:1358–1363

    Google Scholar 

  • Borghi N, Brochard-Wuart F (2007) Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton. Biophys J 93:1369–1379

    Google Scholar 

  • Bosman GJCGM, Lasonder E, Luten M, Roerdinkholder-Stoelwinder B, Novotný VMJ, Bos H, De Grip WJ (2008) The proteome of red cell membranes and vesicles during storage in blood bank conditions. Transfusion 48:827–835

    Google Scholar 

  • Bosman G, Willekens FLA, Weere JM (2012) Erythocyte senesecence. In: Land F, Föller M (eds) Erythrocytes, physiology and pathophysiology. Imperial College Press, London

    Google Scholar 

  • Brochard-Wuart F, Borghi N (2006) Hydrodynamic narrowing of tubes extruded from cells. PNAS 103:7660–7663

    Google Scholar 

  • Brown FLH, Leitner DM, McCammon JA, Wilson K (2000) Lateral diffusion of membranes proteins in the presence of static and dynamic corrals: suggestions for appropriate observables. Biophys J 78(5):2257–2269

    Google Scholar 

  • Cao Z, Bell JB, Mohanty JG, Nagababu E, Rifkind JM (2009) Nitrite enhances hypoxic ATP synthesis and release of ATP into the vasculature: a new mechanism for nitrite-induced vesiculation. Am J Physiol Heart Circ Physiol 297:H1494–H1503

    Google Scholar 

  • Chen LT, Weiss L (1973) The role of the sinus wall in the passage of erythrocytes through the spleen. Blood 41:529–537

    Google Scholar 

  • Cheung KJ, Ewald AJ (2016) A collective route to metastatic seeding by tumor cell clusters. Science 352:167–169

    Google Scholar 

  • Ciana A, Achilli C, Monetti G (2014) Membrane rafts of the human blood cell. Mol Mem Biol 31(2–3):47–57

    Google Scholar 

  • Ciana A, Achilli C, Gaur A, Minetti G (2017) Membrane remodeling and vesicle formation during ageing of human red blood cells. Cell Physiol Biochem 42:1127–1138

    Google Scholar 

  • Ciana A, Achilli C, Minetti G (2017) Spectrin and other membrane-skeletal components in human red blood cells of different age. Cell Physiol Biochem 42:1139–1152

    Google Scholar 

  • Clark MR, Mohandas N, Shobet SB (1983) Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood 61:899–910

    Google Scholar 

  • Closse C, Dochary-Prigent J, Boisseau MR (1999) Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 107:1365–2141

    Google Scholar 

  • Colin Y, Le Van Kim C, El Nemer W (2014) Red cell adhesion in human disease. Curr Opin Hematol 21:186–192

    Google Scholar 

  • Da Costa L, Suner L, Galimand J, Bonnel A, Pascreau T, Couque N, Fenneteau O, Mohandas N (2016) Diagnostic tool for red blood cell membrane disorders: assessment of a new generation of ektacytometer. Blood Cells Mol Dis 56(1):9–22

    Google Scholar 

  • Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370

    Google Scholar 

  • Dailey MO (2002) The immune function of the spleen. In: Bowdler AJ (ed) The complete speen. Humanna Press, Totowa, pp 51–69

    Google Scholar 

  • Deng Y, Papageorgiou DP, Chang H, Abidi SZ, Li X, Dao M, Karniadakis GE (2019) Quantifying shear-induced deformation and detachment of individual adherent sickle red blood cells. Biophys J 116(2):360–371

    Google Scholar 

  • Deplaine G, Safeukui I, Jeddi F, Lacoste F, Brousse V et al (2011) The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro. Blood 117(8):e88–e99

    Google Scholar 

  • Discher DE, Janmey R, Wang YI (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1130–1143

    Google Scholar 

  • Dobbe JGG, Streekstra GJ, Hardeman MR, Ince C, Grimbergen CA (2002) Measurement of the distribution of red blood cell deformability using an automated rheoscope. Cytometery 50:313–325

    Google Scholar 

  • Drenckhahn D, Wagner J (1986) Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to extracellular matrix, and contractility. J Cell Biol 102:1738–1747

    Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell linkage specification. Cell 126:677–689

    Google Scholar 

  • Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(22):3794–3802

    Google Scholar 

  • Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, Chen X, Roberts CJ, Stevens MM (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cells Mater 18:1–14

    Google Scholar 

  • Even-Ram S, Artm V, Yamada K (2006) Matrix control of stem cell fate. Cell 126:645–647

    Google Scholar 

  • Farhadifar R, Röper JC, Aigony B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr Biol 17:2095–2104

    Google Scholar 

  • Franke RP, Grate M, Schnitter H, Seiffge D, Mittermayer C (1984) Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649

    Google Scholar 

  • Freund J (2013) The flow of red blood cells through a narrow spleen-like slit. Phys Fluids 25:110807

    Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Google Scholar 

  • Fujita T (1974) A scanning electron microscope study of the human spleen. Arch Histol Jpn 37:187–216

    Google Scholar 

  • George M, Bullo F, Campás O (2017) Collective individual to collective cell migration. Sci Rep 7:9720

    Google Scholar 

  • Gorfinkiel N, Blanchard GB, Adams RJ, Martinez Arias A (2009) Mechanical control of global cell behavior during dorsal closure in Drosophila. Development 136:1889–1898

    Google Scholar 

  • Granaat D (1953) The spleen in the regulation of arterial blood pressure. J Physiol 122:209–219

    Google Scholar 

  • Grindlay JH, Herrick JF, Baldes EJ (1939) Rhythmicity of the spleen in relation to blood flow. Am J Physiol 127:119–126

    Google Scholar 

  • Groom AC, MacDonald IC, Schmidt EE (2002) Splenic microcirculatory blood flow and function with respect to red blood cells. In: Bowdler AJ (ed) The complete speen. Humanna Press, Totowa, pp 23–50

    Google Scholar 

  • Grossin N, Wautier MP, Picot J, Stern DM, Wautier JI (2009) Differential effect of plasma or erythrocyte AGE: ligands of RAGE on expression of transcripts for receptor isoforms. Diabetes Metab. 35:410–417

    Google Scholar 

  • Gutsaeva DR, Montero-Huerta P, Parkerson JB, Yerigenahally SD, Ikuta T, Head CA (2014) Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability. Blood 123:1917–1926

    Google Scholar 

  • Hochmuth RM, Evans EA (1982) Extensional flow of erythrocyte membrane from cell body to elastic tether I. Anal Biophys J 39:71–81

    Google Scholar 

  • Hochmuth RM, Marcus D (2002) Membrane tethers formed from blood cells with available area and determination of the adhesion energy. Biophys J 82:2964–2969

    Google Scholar 

  • Hochmuth RM, Mohandas N, Blackshear PL (1973) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J 13:747–762

    Google Scholar 

  • Hochmuth RM, Wiles HC, Evans EA, McCown JT (1982) Extensional flow of erythrocyte membrane from cell body to elastic tether II. Exp Biophys J 39:83–89

    Google Scholar 

  • Hosu BG, Sun M, Marga F, Grandbois M (2007) Eukaryotic membranes tethers revisited using magnetic tweezers. Phys Biol 4:67–78

    Google Scholar 

  • Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R (2018) Squeezing for life—properties of red blood cell deformability. Front Physiol 9:656

    Google Scholar 

  • Hwang WC, Waugh RE (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J 72:2669–2678

    Google Scholar 

  • Janmey PA, Winer JP, Murray ME, Wen Q (2009) The hard life of soft cells. Cell Motil Cytoskelet 66:597–605

    Google Scholar 

  • Kapitza HG, Rüpprl DA, Galla HJ, Sackman E (1984) Lateral diffusion of lipids and glycophorin in solid phosphatidylcholine bilayers. Biophys J 45:577–587

    Google Scholar 

  • Kaul DK (2008) Sickle red cell adhesion: many issues and some answers. Transfusion 15:51–55

    Google Scholar 

  • Kaul DK, Tsai HM, Liu XD, Nakada MT, Nagel RL, Coller BS (2000) Monoclonal antibidies to a \(\alpha v \beta 3\) (7E3 and LM609) inhibit sickle red blood cell - endothelium interactions induced by platlet activating factor. Blood 95:368–374

    Google Scholar 

  • Knowles DW, Tilley L, Mohandas N, Chasis JA (1997) Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting. PNAS 94:12969–12974

    Google Scholar 

  • Kodippili G, Spector J, Sullican C, Kuypers F, Labotka R, Gallagher P, Ritchie K, Low P (2009) Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes. Blood 113:6237–6245

    Google Scholar 

  • Kriebardis MH, Antonelou KE, Stamoulis E, Economou-Petersen IHM, Papassideri IS (2008) RBC-derived vesicles during storage ultrastructure, protein composition, oxidation, and singling components. Transfusion 48:1943–1953

    Google Scholar 

  • Kucukal E, Little JA, Gurkan UA (2018) Shear dependent red blood cell adhesion in microscale flow. Integr Biol 10:194–206

    Google Scholar 

  • Lange Y, Slayton JM (1982) Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. J Lipid Res 23:1121–1127

    Google Scholar 

  • Laub M, Hvid-Jacobsen K, Hovind P, Kanstaup IL, Christsen NJ, Netsen SL (1993) Spleen emptying and venous hematocrit in humans during exercise. J Appl Physiol 74(3):1024–1026

    Google Scholar 

  • Laurén E, Tigistu F, Valkonen S, Westberg M, Valkeäjarvi A et al (2018) Phospholipid composition of packed red blood cells and that of extracellular vesicles show a high resemblance and stability during storage. Biochem Biophys Acta 1863:1–8

    Google Scholar 

  • Law R, Carl P, Harper S, Dalhaimer P, Speicher DW, Discher DE (2003) Cooperativity in unfolding of tandem spectrin repeats. Biophys J 84:533–544

    Google Scholar 

  • Lazarova E, Gulbis B, Oirschot B, Wijk R (2017) Next generation osmotic gradient ektacytometry for the diagnosis of hereditary spherocytosis: interlaboratory method validation and experience. Clin Chem Lab Med 55:394–402

    Google Scholar 

  • Leal JK, Adjobo-Hermans MJW, Bosman GJCM (2018) Red blood cell Homeostatis: mechanics and effects of microvesicle generation in health and disease. Front Physiol 9:703

    Google Scholar 

  • Levenberg S, Huang NF, Lavik E, Togers AB, Itskovitz J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. PNAS 100:12741–12746

    Google Scholar 

  • Levesque MJ, Groom AC (1976) Washout kinetics of red cells and plasma from the spleen. Am J Physiol 231:1665–1671

    Google Scholar 

  • Li H, Lykotrafitis G (2015) Vesiculation of healthy and defective red blood cells. Phys Rev E 92:012715

    Google Scholar 

  • Li H, Yang J, Chu TT, Naidu R, Lu L, Chandramohanadas R, Dao M, Kamiadakis GE (2018a) Cytoskeleton remodeling induces membrane stiffness and stability changes in maturing reticulocytes. Biophys J 114:2014–2023

    Google Scholar 

  • Li H, Lu L, Li X, Dao M, Karniadakis GE, Suresh S (2018b) Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. PNAS 115(38):9574–9579

    Google Scholar 

  • Lima De, e Martins Lara N, Fernandes de Avelar G, Mattos Jardini Costa G, Maria dos Santos Nassif Lacerda S (2017) Cell–cell interactions-structural. Reference Module in Biomedical Sciences, Elsevier

  • Lipowsky H, Gao L, Lescanic A (2011) Shedding of the endothelial glycocalyx in arterioles capillaries and venules and its effect on capillary hemodynamics during inflammation. Am J Physiol 301:2235–2245

    Google Scholar 

  • Liu M, Yang J (2009) Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels. Microvasc Res 78:14–19

    Google Scholar 

  • Lutz HU, Liu SH, Palek J (1977) Release of spectrin-free vesicles from human erythrocytes during ATP depletion. J Cell Biol 73:548–560

    Google Scholar 

  • Lux SE (2015) Anatomy of the red blood cell membrane skeleton: unanswered questions. Blood 127(2):187–199

    Google Scholar 

  • MacDonald IC, Ragan DM, Schmidt EE, Groom AC (1987) Kinetics of red blood cell passage through interendothelial slits into venous sinuses in rat spleen, analyzed by in vivo microscopy. Microvasc Res 33:118– 34. See also videos on Utube.com

  • MacDonald IC, Schmidt EE, Groom AC (1991) The high splenic hematocrit: a rheological consequence of red cell flow through the reticular meshwork. Micrvasc Res 42:60–76

    Google Scholar 

  • Mall FP (1902) On the circulation through the pulp of the dog’s spleen. Am J Anat 2:315–322

    Google Scholar 

  • Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420

    Google Scholar 

  • Mebius R, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

    Google Scholar 

  • Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112:3939–3948

    Google Scholar 

  • Mohandas N, Clark MR, Jacobs MS, Shohet SB (1980) Analysis of factors regulating erythrocyte deformability. J Clin Invest 66:563–573

    Google Scholar 

  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. PNAS 102:11594–11599

    Google Scholar 

  • Neu B, Sowemimo-Coker S, Meiselman HJ (2003) Cell-cell affinity of senescent human erythrocytes. Biophys J 80:75–84

    Google Scholar 

  • Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101:513–518

    Google Scholar 

  • Oberieithner H, White M, Kusche-Vihrog K (2015) Sodium renders endothelial cells sticky for red blood cells. Front Physiol 6:188

    Google Scholar 

  • Opdyke DF (1993) Hemodynamics of blood flow though the spleen. Am J Physiol 219(1):102–106

    Google Scholar 

  • Opdyke DF, Apostolico R (1966) Splenic contraction and optical density of blood. Am J Physiol 211:329–334

    Google Scholar 

  • Orgovan N, Peter B, Bäsze S, Ramsden JJ, Szabó B, Horvath R (2014) Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 4:4034–4041

    Google Scholar 

  • Parpart AK, Lorenz PB, Parpart ER, Gregg JR, Chase AM (1946) The osmotic resistance (fragility) of human red cells

  • Peng Z, Asaro RJ, Zhu Q (2010) Multiscale simulation of erythrocyte membrane. Phys Rev E 81:031904

    Google Scholar 

  • Pivkin IV, Peng Z, Karniadakis GE, Buffet PA, Dao M, Suresh S (2016) Biomechanics of red blood cells in human spleen and consequences for physiology and disease. PNAS 113(28):7804–7809

    Google Scholar 

  • Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffiers RM, Bartels M, van Wijk R (2019) Red Blood cells: chasing interactions. Front Physiol 10:945

    Google Scholar 

  • Prudent M, Delobel J, Hübner A, Benay C, Lyon N, Tissot FD (2018) Proteomics of stored red blood cell membrane and storage-induced microvesicles reveals the association of flotillin 2 with band 3 complexes. Front Physiol 9:421

    Google Scholar 

  • Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A et al (2017) Microvesicles in vascular homeostasis and diseases. Thromb Haemost 117:1296–1316

    Google Scholar 

  • Rief MJ, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553–561

    Google Scholar 

  • Roy CS (1881) The physiology of the spleen. J Physiol 3:203–229

    Google Scholar 

  • Safeukui I, Correas JM, Brousse V, Hirt D, Deplaine G, Buffert PA (2008) Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen. Blood 112:2520–2528

    Google Scholar 

  • Safeukui I, Buffet PA, Deplaine G, Perrot S, Brousse V, Ndour A, Nguyen M, Mercereau-Puijalon O, David PH, Milon G, Mohandas N (2012) Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen. Blood 120(2):424–430

    Google Scholar 

  • Salehyar S, Zhu Q (2017) Effects of stiffness and volume on the transit time of an erythrocyte through a slit. Biomech Model Mechanobiol 16(3):921–931

    Google Scholar 

  • Sarkar M, Barari SK, Mandai DB, Nandankar UA, Basu A, Mohanty TK, Ray S (1999) The effect of anti-coagulants on the osmotic fragility of erythrocytes in the yak (Poephagus grunniens). Vet J 157:91–93

    Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1988) Microcirculatory pathways in normal human spleen, demonstrated by scanning electron microscopy of corrosion casts. Am J Anat 181:253–266

    Google Scholar 

  • Schmidt AM, Hori O, Cao R, Yan S, Brett J, Wautier J et al (1996) RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45(suppl):577–580

    Google Scholar 

  • Setty Y, Betal SG (2008) Microvascular endothelial cells express a phosphatidylserine receptor: a functionally active receptor for phosphatidylserine-positive erythrocytes. Blood 99:099463

    Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. PNAS 71:4457–4461

    Google Scholar 

  • Shin S, Hou JX, Suh JS, Singh M (2007) Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability. Clin Hemorrheol Microcirc 37:319–328

    Google Scholar 

  • Spangler EJ, Harvey CW, Revalee JD, Kumar PS, Laraji M (2011) Computer simulation cytoskeleton-induced blebbing in lipid membranes. Phys Rev E 84:051906

    Google Scholar 

  • Sztilovics M, Gerecsel T, Peter B, Saftics A, Kurunczi S, Szekacs I, Szabó B, Horvath R (2020) Single-cell adhesion force kinetics of cell populations from combined label-free optical biosensors and robotic fluid force microscopy. Sci Rep 10:61–74

    Google Scholar 

  • Telen M (2007) Role of adhesion molecules and vascular endothelium in the pathogenesis of sickle cell disease. Hematol Am Soc Educ Prog 84–90

  • Tojkander S, Gateva G, Lappaiainen P (2012) Actin stress fibers—assembly, dynamics and biological roles. J Cell Sci 125:1864–1885

    Google Scholar 

  • Tomishige M, Sako Y, Kusumi A (1993) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142:989–1000

    Google Scholar 

  • Trinh-Trang-Tan MM, Vilela-Lamego C, Picot J, Wautier MP, Cartron JP (2010) Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium. Haemotologica 95(5):730–737

    Google Scholar 

  • van Leeuwenhoek A (1675) Letter dated March 26, 1675 to the Royal Society, London

  • Wagner GM, Chiu DT, Yee MC, Lubin BH (1986) Red cell vesiculation—a common physiologic event. J Lab Clin Med 108(4):315–324

    Google Scholar 

  • Walensky L (2003) Disorders of the red blood cell membrane. Lippincott, Williams and Williams, Philadelphia, pp 1709–1858

    Google Scholar 

  • Wang JHC, Goldschmidt-Clermont P, Yin FCP (2000) Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann Biol Eng 28:1165–1171

    Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Google Scholar 

  • Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GI (1992) Rheological properties of senescent erythrocytes: loss of surface area and volume with red cell age. Blood 79:1351–1358

    Google Scholar 

  • Wautier JL, Wautier MP (2013) Molecular basis of erythrocyte adhesion to endothelial cells in disease. Clin Hemotol Microcirc 53(1–2):11–21

    Google Scholar 

  • Wautier JL, LeBlanc H, Wantier MP, Abadie F, Passa P, Caen JP (1986) Erythrocyte adhesion to cultured endothelium and glycaemic control in type 1 (insulin-dependent) diabetic patients. Diabetologia 29:151–155

    Google Scholar 

  • Wautier MP, Héron E, Picot J, Colin Y, Hermine O, Wautier JL (2011) Red blood phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion. J Throm Haemostat 9(5):1049–1055

    Google Scholar 

  • Weibaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx. Annu Rev Biomed Eng 9:121–167

    Google Scholar 

  • Willekens FLA, Weere JM, Groenen-döpp YA, Bregt-Roerdinkholder B, de Pauw B, Bosman GJCGM (2003a) Erythrocyte vesiculation: a self-protective mechanism? Brit J Haematol 141:549–556

    Google Scholar 

  • Willekens FLA, Bregt-Roerdinkholder B, Groenen-döpp YA, Bos HJ, Bosman GJCGM, van den Bos AG, Verkeij AJ, Weere JM (2003b) Haemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 101:747–751

    Google Scholar 

  • Wood BL, Gibson DF, Tait JF (1996) Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow cytometric measurement and clinical associations. Blood 88:1873–1880

    Google Scholar 

  • Yang Y, Koo S, Lin CS, Neu B (2010) Specific bonding of red blood cells to endothelial cells is regulated by nonadsorbing macromolecules. J Biol Chem 285:40489–40495

    Google Scholar 

  • Zarà M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS (2019) Biology and role of extracellular vesicles (EVs) in the pathogenesis of thrombosis. Int J Mol Sci 20(11):2840–2872

    Google Scholar 

  • Zennadi R, Hines PC, de Castro IM, Cartron JP, Parise IV, Telen MJ (2004) Epinephrine acts through erythroid singling pathways to activate sickle cell adhesion to endothelium via LW-\(\alpha v \beta 3\) interactions. Blood 104:3774–3781

    Google Scholar 

  • Zhu Q, Asaro R (2008) Spectrin folding vs. unfolding reactions and RBC membrane stiffness. Biophys J 94:2529–2545

    Google Scholar 

  • Zhu Q, Salehyar S, Cabrales P, Asaro R (2017) Prospects of human erythrocyte skeleton-bilayer dissociation during splenic flow. Biophy J 113(4):900–912

    Google Scholar 

  • Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Asaro.

Ethics declarations

Conflicts of interest

The authors acknowledge that this manuscript has not been published or submitted to any other journal or media. The authors, RJA, QZ, and I.C. MacDonald, all contributed to the writing and planning of the manuscript. No human subjects were used in the research performed, and both authors consent to the present submission. In addition, there are no conflicts of interest to report.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 105 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaro, R.J., Zhu, Q. & MacDonald, I.C. Tethering, evagination, and vesiculation via cell–cell interactions in microvascular flow. Biomech Model Mechanobiol 20, 31–53 (2021). https://doi.org/10.1007/s10237-020-01366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01366-9

Keywords

Navigation