Skip to main content

Advertisement

Log in

Strain-dependent oxidant release in articular cartilage originates from mitochondria

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously, we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium, an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (\(r^2 = 0.87, p < 0.05\)), and significant cell death was observed at strains \(>\)40 %. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

DHE:

Dihydroethidium

MPa:

Megapascal

MnTMPyP:

Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride

EthD-2:

Ethidium homodimer-2

QCIP\(^\mathrm{TM}\) :

Quantitative cell image processing

Hif:

Hypoxia inducible factor

tBHP:

Tertiary butyl hydroperoxide

MMP-13:

Matrix metalloproteinase 13

References

  • Ahmad R, Sylvester J, Ahmad M, Zafarullah M (2011) Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes. Arch Biochem Biophys 507(2):350–355. doi:10.1016/j.abb.2010.12.032

    Article  Google Scholar 

  • Araujo-Chaves JC, Yokomizo CH, Kawai C, Mugnol KC, Prieto T, Nascimento OR, Nantes IL (2011) Towards the mechanisms involved in the antioxidant action of MnIII [meso-tetrakis(4-N-methyl pyridinium) porphyrin] in mitochondria. J Bioenerg Biomembr 43(6):663–671. doi:10.1007/s10863-011-9382-3

    Article  Google Scholar 

  • Bachrach NM, Mow VC, Guilak F (1998) Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J Biomech 31(5):445–451. doi:10.1016/S0021-9290(98)00035-9

    Article  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS (2007) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 27(16):5737–5745. doi:10.1128/MCB.02265-06

    Article  Google Scholar 

  • Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT, Rubash HE, Li G (2008) In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology 47(11): 1622–1627. doi:10.1093/rheumatology/ken345

    Google Scholar 

  • Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7(3):161–169. doi:10.1038/nrrheum.2010.213

    Article  Google Scholar 

  • Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I (2008) Mapping the depth dependence of shear properties in articular cartilage. J Biomech 41(11):2430–2437. doi:10.1016/j.jbiomech.2008.05.021

    Article  Google Scholar 

  • Chahine NO, Ateshian GA, Hung CT (2007) The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage. Biomech Model Mechanobiol 6(1–2):103–111. doi:10.1007/s10237-006-0041-2

    Article  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217(1):383–393

    Google Scholar 

  • Cillero-Pastor B, Carames B, Lires-Dean M, Vaamonde-Garcia C, Blanco FJ, Lopez-Armada MJ (2008) Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheum 58(8):2409–2419. doi:10.1002/art.23644

    Article  Google Scholar 

  • Durrant LA, Archer CW, Benjamin M, Ralphs JR (1999) Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J Anat 194(Pt 3):343–353

    Article  Google Scholar 

  • Gardner PR, Nguyen DD, White CW (1996) Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells. Arch Biochem Biophys 325(1):20–28. doi:10.1006/abbi.1996.0003

    Article  Google Scholar 

  • Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, Martin JA (2010) Rotenone prevents impact-induced chondrocyte death. J Orthop Res 28(8):1057–1063. doi:10.1002/jor.21091

    Google Scholar 

  • Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35(9):505–513. doi:10.1016/j.tibs.2010.04.002

    Article  Google Scholar 

  • Hosseini A, Van de Velde SK, Kozanek M, Gill TJ, Grodzinsky AJ, Rubash HE, Li G (2010) In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint. Osteoarthr Cartil 18(7):909–916. doi:10.1016/j.joca.2010.04.011

    Article  Google Scholar 

  • Knight MM, Bomzon Z, Kimmel E, Sharma AM, Lee DA, Bader DL (2006) Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields. Biomech Model Mechanobiol 5(2–3):180–191

    Article  Google Scholar 

  • Lee RB, Urban JP (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321(Pt 1):95–102

    Google Scholar 

  • Lee RB, Urban JP (2002) Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum 46(12):3190–3200. doi:10.1002/art.10686

    Article  Google Scholar 

  • Martin JA, Martini A, Molinari A, Morgan W, Ramalingam W, Buckwalter JA, McKinley TO (2012) Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthr Cartil 20(4):323–329. doi:10.1016/j.joca.2012.01.003

    Article  Google Scholar 

  • Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO (2009) N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am 91(8):1890–1897. doi:10.2106/JBJS.H.00545

    Article  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20. doi:10.1016/j.devcel.2005.12.006

    Google Scholar 

  • Otte P (1991) Basic cell metabolism of articular cartilage. Manometric studies. Z Rheumatol 50(5):304–312

    Google Scholar 

  • Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41(6):699–712. doi:10.1080/10715760701297354

    Article  Google Scholar 

  • Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111(Pt 5):573–583

    Google Scholar 

  • Quinn TM, Morel V, Meister JJ (2001) Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J Biomech 34(11): 1463–1469

    Google Scholar 

  • Ramakrishnan P, Hecht BA, Pedersen DR, Lavery MR, Maynard J, Buckwalter JA, Martin JA (2010) Oxidant conditioning protects cartilage from mechanically induced damage. J Orthop Res 28(7): 914–920. doi:10.1002/jor.21072

    Google Scholar 

  • Ramakrishnan PS, Pedersen DR, Stroud NJ, McCabe DJ, Martin JA (2011) Repeated measurement of mechanical properties in viable osteochondral explants following a single blunt impact injury. Proc Inst Mech Eng H 225(10):993–1002

    Article  Google Scholar 

  • Sauter E, Buckwalter JA, McKinley TO, Martin JA (2012) Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res 30(4):593–598. doi:10.1002/jor.21552

    Article  Google Scholar 

  • Schinagl RM, Ting MK, Price JH, Sah RL (1996) Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng 24(4): 500–512

    Google Scholar 

  • Stevens AL, Wishnok JS, White FM, Grodzinsky AJ, Tannenbaum SR (2009) Mechanical injury and cytokines cause loss of cartilage integrity and upregulate proteins associated with catabolism, immunity, inflammation, and repair. Mol Cell Proteomics 8(7):1475–1489. doi:10.1074/mcp.M800181-MCP200

    Article  Google Scholar 

  • Stockwell RA (1991) Morphometry of cytoplasmic components of mammalian articular chondrocytes and corneal keratocytes: species and zonal variations of mitochondria in relation to nutrition. J Anat 175:251–261

    Google Scholar 

  • Strathmann J, Klimo K, Sauer SW, Okun JG, Prehn JH, Gerhauser C (2010) Xanthohumol-induced transient superoxide anion radical formation triggers cancer cells into apoptosis via a mitochondria-mediated mechanism. FASEB J 24(8):2938–2950. doi:10.1096/fj.10-155846

    Article  Google Scholar 

  • Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C (2007) Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol 34(3):556–562

    Google Scholar 

  • Torzilli PA, Deng XH, Ramcharan M (2006) Effect of compressive strain on cell viability in statically loaded articular cartilage. Biomech Model Mechanobiol 5(2–3):123–132. doi:10.1007/s10237-006-0030-5

    Article  Google Scholar 

  • Trickey WR, Vail TP, Guilak F (2004) The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J Orthop Res 22(1):131–139. doi:10.1016/S0736-0266(03)00150-5

    Article  Google Scholar 

  • Weidemann A, Johnson RS (2008) Biology of HIF-1alpha. Cell Death Differ 15(4):621–627. doi:10.1038/cdd.2008.12

    Article  Google Scholar 

  • Wolff KJ, Ramakrishnan PS, Brouillette MJ, Journot BJ, McKinley TO, Buckwalter JA, Martin JA (2013) Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res 31(2):191–196. doi:10.1002/jor.22223

    Google Scholar 

  • Wong M, Carter DR (2003) Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33(1):1–13

    Article  MathSciNet  Google Scholar 

  • Zhou S, Cui Z, Urban JP (2004) Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum 50(12):3915–3924. doi:10.1002/art.20675

    Article  Google Scholar 

Download references

Acknowledgments

We thank Rachel Brouillette for editing. Confocal images were all taken at the Central Microscopy Research Facility, University of Iowa, Iowa City. This work was supported by the National Institutes of Health (CORT NIH P50 AR055533) and by a Merit Review Award from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Brouillette.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 582 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouillette, M.J., Ramakrishnan, P.S., Wagner, V.M. et al. Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol 13, 565–572 (2014). https://doi.org/10.1007/s10237-013-0518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0518-8

Keywords

Navigation