Skip to main content
Log in

Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Spontaneous dissection of the human thoracic aorta is responsible for significant morbidity and mortality, yet this devastating biomechanical failure process remains poorly understood. In this paper, we present finite element simulations that support a new hypothesis for the initiation of aortic dissections that is motivated by extensive histopathological observations. Specifically, our parametric simulations show that the pooling of glycosaminoglycans/proteoglycans that is singularly characteristic of the compromised thoracic aorta in aneurysms and dissections can lead to significant stress concentrations and intra-lamellar Donnan swelling pressures. We submit that these localized increases in intramural stress may be sufficient both to disrupt the normal cell-matrix interactions that are fundamental to aortic homeostasis and to delaminate the layered microstructure of the aortic wall and thereby initiate dissection. Hence, pathologic pooling of glycosaminoglycans/proteoglycans within the medial layer of the thoracic aortic should be considered as a possible target for clinical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

  • Azeloglu EU, Albro MB, Thimmappa VA, Ateshian GA, Costa KD (2008) Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am J Physiol 294:H1197–H1205

    Google Scholar 

  • Beller CJ, Labrosse MR, Thubrikar MJ, Robicsek F (2008) Finite element modeling of the thoracic aorta: including aortic root motion to evaluate risk of aortic dissection. J Med Eng Tech 32:167–170

    Article  Google Scholar 

  • Bode-Janisch S, Schmidt A, Gunther D, Stuhrmann M, Fieguth A (2012) Aortic dissecting aneurysms—Histopathological findings. Forensic Sci Int 214:13–17

    Article  Google Scholar 

  • Borges LF, Jaldin RG, Dias RR, Stolf NAG, Michel J-B, Gutierrez PS (2008) Collagen is reduced and disrupted in human aneurysms and dissections of ascending aorta. Hum Pathol 39:437–443

    Article  Google Scholar 

  • Borges LF, Touat Z, Leclercq A, Joundeau G, Franc B, Philippe M, Meilhac O, Gutierrez PS, Michel JB (2009) Tissue diffusion and retention of metalloproteinases in ascending aortic aneurysms and dissections. Hum Pathol 40:306–313

    Article  Google Scholar 

  • Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC (2001) Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res 88:37–43

    Article  Google Scholar 

  • Chahine NO, Chen FH, Hung CT, Ateshian GA (2005) Direct measurement of osmotic pressure of glycosaminoglycans solutions by membrane osmometry at room temperature. Biophys J 89:1543–1550

    Article  Google Scholar 

  • Collins MJ, Dev V, Strauss BH, Fedak PWM, Butany J (2008) Variation in the histopathological features of patients with ascending aortic aneurysms: a study of 111 surgically excised cases. J Clin Pathol 61:519–523

    Article  Google Scholar 

  • Dingemans RP, Teeling P, Lagendijk JH, Becker AE (2000) Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Record 258:1–14

    Article  Google Scholar 

  • Elefteriades JA, Farkas EA (2010) Thoracic aortic aneurysm: clinically pertinent controversies and uncertainties. J Am Coll Cardiol 55:841–857

    Article  Google Scholar 

  • El-Hamamsy I, Yacoub MH (2009) Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 6:771–786

    Article  Google Scholar 

  • Elkin BS, Shaik MA, Morrison B (2011) Chondroitinase ABC reduces brain tissue swelling in vitro. J Neurotrauma 28:2277–2285

    Google Scholar 

  • Ferruzzi J, Vorp DA, Humphrey JD (2011) On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J R Soc Interface 8:435–450

    Article  Google Scholar 

  • Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36:589–597

    Article  Google Scholar 

  • Garcia-Herrera CM, Celentano DJ, Cruchaga MA, Rojo FJ, Atienza JM, Guinea GV, Goicolea JM (2012) Mechanical characterization of the human thoracic descending aorta: experiments and modelling. Comput Methods Biomech Biomed Eng 15:185–193

    Article  Google Scholar 

  • Gasser TC, Holzapfel GA (2006) Modeling the propagation of arterial dissection. Eur J Mech A Solids 25:617–633

    Article  MATH  MathSciNet  Google Scholar 

  • Grond-Ginsbach C, Pjonteck R, Aksay SS, Hyhlik-Durr A, Bockler D, Gross-Weissmann M-L (2010) Spontaneous arterial dissection: phenotype and molecular pathogenesis. Cell Mol Life Sci 67:1799–1815

    Article  Google Scholar 

  • Guo DC, Regalado ES, Minn C, Tran-Fadulu V, Coney J, Cao J, Wang M, Yu RK, Estrera AL, Safi HJ, Shete SS, Milewicz DM (2011) Familial thoracic aneurysms and dissections: identification of a novel locus for stable aneurysms with a low risk for progression to aortic dissection. Circ Cardiovasc Genet 4:36–42

    Article  Google Scholar 

  • Halushka MK (2012) Single gene disorders of the aortic wall. Cardiovasc Pathol 21:240–244

    Article  Google Scholar 

  • He R, Guo D-C, Sun W, Papke CL, Duraiswamy S, Estrera AL, Safi HJ, Ahn C, Buja M, Arnett FC, Zhang J, Geng Y-J, Milewicz DM (2008) Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, famial thoracic aortic aneurysms, and sporadic aneuryms. J Thorac Cardiovasc Surg 136:922–929

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MATH  MathSciNet  Google Scholar 

  • Homme JL, Aubry M-C, Edwards WD, Bagniewski SM, Pankratz VS, Kral CA, Tazelaar HD (2006) Surgical pathology of the ascending aorta: a clinicopathologic study of 513 cases. Am J Surg Pathol 30:1159–1168

    Article  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  • Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50:53–78

    Article  Google Scholar 

  • Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 10:221–246

    Article  Google Scholar 

  • Humphrey JD (2013) Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-b. J Vasc Res 50:1–10

    Article  Google Scholar 

  • Iliopoulos DC, Kritharis EP, Giagini AT, Papadodima SA, Sokolis DP (2009) Ascending thoracic aortic aneurysms associated with compositional remodeling and vessel stiffening but not weakening in age matched subjects. J Thorac Cardiovasc Surg 137:101–109

    Google Scholar 

  • Inamoto S, Kwartler CS, Lafont AL, Liang YY, Fadulu VT, Duriaswamy S, Willing M, Estrera A, Safi H, Hannibal MC, Carey J, Wiktorowicz J, Tan FK, Feng XH, Pannu H, Milewicz DM (2010) TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res 88:520–529

    Google Scholar 

  • Jain D, Dietz HC, Oswald GL, Maleszewski JJ, Halushka MK (2011) Causes and histopathology of ascending aortic disease in children and young adults. Cardiovasc Pathol 20:15–25

    Article  Google Scholar 

  • Jones JA, Spinale FG, Ikonomidis JS (2009) Transforming growth factor signaling in thoracic aortic aneurysm development: a paradox in pathogenesis. J Vasc Res 46:119–137

    Article  Google Scholar 

  • Karmonik C, Bismuth J, Shah DJ, Davies MG, Purdy D, Lumsden AB (2011) Computational study of haemodynamic effects of entry- and exit-tear coverage in a DeBakey type III aortic dissection: technical report. Eur J Vasc Endovasc Surg 42:172–177

    Article  Google Scholar 

  • Khanafer K, Berguer R (2009) Fluid-structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech 42:2642–2648

    Article  Google Scholar 

  • Kroner BL et al (2011) The national registry of genetically triggered thoracic aortic aneurysms and cardiovascular conditions (GenTAC): results from phase I and scientific opportunities in phase II. Am Heart J 162:627–632

    Article  Google Scholar 

  • Lasheras JC (2007) The biomechanics of arterial aneurysms. Annu Rev Fluid Mech 39:293–319

    Article  MathSciNet  Google Scholar 

  • Lesauskaite V, Tanganelli P, Sassi C, Neri E, DiCiolla F, Ivanoviene L, Epistolato MC, Lalinga AV, Alessandrini C, Spina D (2001) Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Human Pathol 32:1003–1011

    Article  Google Scholar 

  • Lindeman JHN, Ashcroft BA, Beenakker JWM, van Es M, Koekkoek NBR, Prins FA, Tielemans JF, Abdul-Hussien H, Bank RA, Oosterkamp TH (2010) Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. PNAS 107:862–865

    Google Scholar 

  • Lindsay ME, Dietz HC (2011) Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473:308–316

    Article  Google Scholar 

  • MacLean NF, Dudek NL, Roach MR (1999) The role of radial elastic properties in the development of aortic dissection. J Vasc Surg 29:703–710

    Article  Google Scholar 

  • Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:011005

    Article  Google Scholar 

  • Majesky MW, Dong XR, Hoglund VJ (2011) Parsing aortic aneurysms: more surprises. Circ Res 108:528–530

    Article  Google Scholar 

  • Maleszewski JJ, Miller DV, Lu J, Dietz HC, Halushka MK (2009) Histopathologic findings in ascending aortas from individuals with Loeys–Dietz syndrome (LDS). Am J Surg Path 33:194–201

    Article  Google Scholar 

  • Matt P, Huso DL, Habashi J, Holm T, Doyle J, Schoenhoff F, Liu G, Black J, van Eyk JE, Deitz HC (2010) Murine model of surgically induced acute aortic dissection type A. J Thorac Cardiovasc Surg 139:1041–1047

    Article  Google Scholar 

  • Mayerick C, Carre F, Elefteriades J (2010) Aortic dissection and sport: physiologic and clinical understanding provide an opportunity to save young lives. J Cardiovasc Surg (Torino) 51:669–681

    Google Scholar 

  • Milewicz DM, Gou DC, Fadulu VT, Lafont AL, Papke CL, Inamoto S, Kwartler CS, Pannu H (2008) Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet 9:283–302

    Article  Google Scholar 

  • Nataatmadja M, West J, West M (2006) Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 114:I-371–377

    Article  Google Scholar 

  • Nathan DP, Xu C, Gorman JH, Fairman RM, Bavaria JE, Gorman RC, Chandran KB, Jackson BM (2011) Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann Thorac Surg 91: 458–464

    Google Scholar 

  • Pasta S, Phillippi JA, Gleason TG, Vorp DA (2012) Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J Thorac Cardiovasc Surg 143:460–467

    Article  Google Scholar 

  • Porterfield SP, Calhoon TB, Weiss HS (1968) Changes in connective tissue colloidal charge density with atherosclerosis and age. Am J Physiol 215:324–329

    Google Scholar 

  • Prokop EK, Palmer RF, Wheat MW (1970) Hydrodynamic forces in dissecting aneurysms. Circ Res 27:121–127

    Article  Google Scholar 

  • Rasmussen LM, Wolf YG, Ruoslahti E (1995) Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity. Am J Pathol 147:1041–1048

    Google Scholar 

  • Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns JP, Bonduelle M, Dietz HC, Gaspar IM, Cavaco D, Stattin EL, Schrander-Stumpel C, Coucke P, Loeys B, de Paepe A, de Backer J (2012) Novel MYH11 and ACTA2 mutations reveal a role of enhanced TGF-beta signaling in FTAAD. Int J Cardiol. doi:10.1016/j.ijcard.2011.08.079

  • Reynertson RH, Parmley RT, Roden L, Oparil S (1986) Proteoglycans and hypertension: I. A biochemical and ultrastructural study of aorta glycosaminoglycans in spontaneously hypertensive rats. Coll Relat Res 6:77–101

    Article  Google Scholar 

  • Ricard-Blum S, Ballut L (2011) Matricryptins derived from collagens and proteoglycans. Front Biosci 16:674–697

    Article  Google Scholar 

  • Roberts WC (1982) Pathology of arterial aneurysms. In: Bergan JJ, Yao, JST (eds) Aneurysms—diagnosis and treatment. Grune & Stratton, New York

  • Roccabianca S, Figueroa CA, Tellides G, Humphrey JD (2013) Quantification of regional differences in aortic stiffness in the aging human. J Mech Behav Biomed Matl. http://dx.doi.org/10.1016/j.jmbbm.2013.01.026

  • Ruddy JM, Jones JA, Spinale FG, Ilonomidis JS (2008) Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 136:1123–1130

    Article  Google Scholar 

  • Saraff K, Babamusta F, Cassis LA, Daugherty A (2003) Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin-II infused apolipoprotein-E deficient mice. Arter Thromb Vasc Biol 23:1621–1626

    Article  Google Scholar 

  • Schriefl AJ, Collins MJ, Pierce DM, Holzapfel GA, Niklason LE, Humphrey JD (2012a) Remodeling of intramural thrombus and collagen in an Ang-II infusion ApoE\(-/-\) model of dissecting aortic aneurysm. Thromb Res 130:e139–146

    Article  Google Scholar 

  • Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA (2012b) Determination of layer specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 9:1271–1286

    Google Scholar 

  • Sommer G, Gasser TC, Regitnig P, Auer M, Holzapfel GA (2006) Dissection properties of the human aortic media: an experimental study. J Biomech Eng 130:021007

    Article  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715

    Article  Google Scholar 

  • Stevic I, Chan HHW, Chan AKC (2011) Carotid artery dissections: thrombosis of the false lumen. Thromb Res 128:317–324

    Article  Google Scholar 

  • Tam ASM, Sapp C, Roach MR (1998) The effect of tear depth on the propagation of aortic dissections in isolated porcine thoracic aorta. J Biomech 31:673–676

    Article  Google Scholar 

  • Tsai DR, Schlicht MS, Kanafer K, Bull JL, Valassis DR, Williams DM, Berguer R, Eagle KA (2008) Tear size and location impacts false lumen pressure in an ex vivo model of chronic type B aortic dissection. J Vasc Surg 47:844–851

    Article  Google Scholar 

  • Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44:827–836

    Article  Google Scholar 

  • Tinoco I, Sauer K, Wang JC, Puglisi JD (2002) Physical chemistry. principles and applications in biological sciences. Prentice-Hall, New Jersey

    Google Scholar 

  • Van Baardwijk D, Roach MR (1987) Factors in the propagation of aortic dissections in canine thoracic aortas. J Biomech 20:67–73

    Article  Google Scholar 

  • Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilcrest L, Weinbaum S (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. PNAS 103:14678– 14683

    Article  Google Scholar 

  • Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA (2012) Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater 12:93–106

    Article  Google Scholar 

  • Wheaton AJ, Borthakur A, Shapiro EM, Regatte RR, Akella SVS, Kneeland JB, Reddy R (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR Imaging—feasibility study. Radiology 231:900–905

    Google Scholar 

  • Wight TN (2008) Arterial remodeling in vascular disease: a key role for hyaluronan and versican. Front Biosci 13:4933–4937

    Google Scholar 

  • Yang SNY, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ (2010) Transforming growth factor-beta regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. J Diabetes 2:233–242

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant from the NIH (HL107768) and a grant from the National Marfan Foundation. Conflict of interest The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Humphrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roccabianca, S., Ateshian, G.A. & Humphrey, J.D. Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech Model Mechanobiol 13, 13–25 (2014). https://doi.org/10.1007/s10237-013-0482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0482-3

Keywords

Navigation