Skip to main content
Log in

Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves

Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Embryonic heart valves develop under continuous and demanding hemodynamic loading. The particular contributions of fluid pressure and shear tractions in valve morphogenesis are difficult to decouple experimentally. To better understand how fluid loads could direct valve formation, we developed a computational model of avian embryonic atrioventricular (AV) valve (cushion) growth and remodeling using experimentally derived parameters for the blood flow and the cushion stiffness. Through an iterative scheme, we first solved the fluid loads on the axisymmetric AV canal and cushion model geometry. We then applied the fluid loads to the cushion and integrated the evolution equations to determine the growth and remodeling. After a set time of growth, we updated the fluid domain to reflect the change in cushion geometry and resolved for the fluid forces. The rate of growth and remodeling was assumed to be a function of the difference between the current stress and an isotropic homeostatic stress state. The magnitude of the homeostatic stress modulated the rate of volume addition during the evolution. We found that the pressure distribution on the AV cushion was sufficient to generate leaflet-like elongation in the direction of flow, through inducing tissue resorption on the inflow side of cushion and expansion on the outflow side. Conversely, shear tractions minimally altered tissue volume, but regulated the remodeling of tissue near the cushion surface, particular at the leading edge. Significant shear and circumferential residual stresses developed as the cushion evolved. This model offers insight into how natural and perturbed mechanical environments may direct AV valvulogenesis and provides an initial framework on which to incorporate more mechano-biological details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Roubaie S, Jahnsen ED, Mohammed M, Henderson-Toth C, Jones EA (2011) Rheology of embryonic avian blood. Am J Physiol Heart C 301(6): H2473–H2481

    Article  Google Scholar 

  • Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59(4): 863–883

    Article  MathSciNet  Google Scholar 

  • Ambrosi D, Guillou A (2007) Growth and dissipation in biological tissues. Continuum Mech Thermodyn 5: 245–251

    Article  MathSciNet  Google Scholar 

  • Bartman T, Walsh EC, Wen KK, McKane M, Ren J, Alexander J, Rubenstein PA, Stainier DY (2004) Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol 2(5): E129

    Article  Google Scholar 

  • Bartram U, Molin DG, Wisse LJ, Mohamad A, Sanford LP, Doetschman T, Speer CP, Poelmann RE, Gittenberger de Groot AC (2001) Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in tgf-beta(2)-knockout mice. Circulation 103(22): 2745–2752

    Article  Google Scholar 

  • Beloussov LV, Grabovsky VI (2006) Morphomechanics: goals, basic experiments and models. Int J Dev Biol 50(2–3): 81–92

    Article  Google Scholar 

  • Beloussov LV, Luchinskaia NN (1995) Biomechanical feedback in morphogenesis, as exemplified by stretch responses of amphibian embryonic tissues. Biochem Cell Biol 73(7–8): 555–563

    Article  Google Scholar 

  • Biechler SV, Potts JD, Yost MJ, Junor L, Goodwin RL, Weidner JW (2010) Mathematical modeling of flow-generated forces in an in vitro system of cardiac valve development. Ann Biomed Eng 38(1): 109–117

    Article  Google Scholar 

  • Buskohl PR, Gould RA, Butcher JT (2012) Quantification of embryonic atrioventricular valve biomechanics during morphogenesis. J Biomech 45(5): 895–902

    Article  Google Scholar 

  • Butcher JT, Markwald RR (2007) Valvulogenesis: the moving target. Philos Trans R Soc B 362(1484): 1489–1503

    Article  Google Scholar 

  • Butcher JT, McQuinn TC, Sedmera D, Turner D, Markwald RR (2007) Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition. Circ Res 100(10): 1503–1511

    Article  Google Scholar 

  • Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108(2): 189–192

    Article  Google Scholar 

  • Cowin SC, Van Buskirk WC (1979) Surface bone remodeling induced by a medullary pin. J Biomech 12(4): 269–276

    Article  Google Scholar 

  • de Lange FJ, Moorman AF, Anderson RH, Manner J, Soufan AT, de Gier-de Vries C, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95(6): 645–654

    Article  Google Scholar 

  • Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77(1): 1–6

    Article  Google Scholar 

  • Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312(5774): 751–753

    Article  Google Scholar 

  • Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue: mass transport coupled with mechanics. J Mech Phys Solids 52((7): 1595–1625

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez-Sanchez A, Bader D (1990) In vitro analysis of cardiac progenitor cell differentiation. Dev Biol 139(1): 197–209

    Article  Google Scholar 

  • Groenendijk BC, Hierck BP, Vrolijk J, Baiker M, Pourquie MJ, Gittenbergerde Groot AC, Poelmann RE (2005) Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circ Res 96(12): 1291–1298

    Article  Google Scholar 

  • Hinton RB, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, Yutzey KE (2006) Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res 98(11): 1431–1438

    Article  Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger de Groot AC, Poelmann RE (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80(4): 473–481

    Article  Google Scholar 

  • Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919): 172–177

    Article  Google Scholar 

  • Hu N, Clark EB (1989) Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res 65(6): 1665–1670

    Article  Google Scholar 

  • Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mech 2(2): 109–126

    Article  Google Scholar 

  • Kruithof BP, Krawitz SA, Gaussin V (2007) Atrioventricular valve development during late embryonic and postnatal stages involves condensation and extracellular matrix remodeling. Dev Biol 302(1): 208–217

    Article  Google Scholar 

  • Lin IE, Taber LA (1995) A model for stress-induced growth in the developing heart. J Biomech Eng 117(3): 343–349

    Article  Google Scholar 

  • Lincoln J, Alfieri CM, Yutzey KE (2004) Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn 230(2): 239–250

    Article  Google Scholar 

  • Lincoln J, Florer JB, Deutsch GH, Wenstrup RJ, Yutzey KE (2006) Colva1 and colxia1 are required for myocardial morphogenesis and heart valve development. Dev Dyn 235(12): 3295–3305

    Article  Google Scholar 

  • Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Struct 39(18): 4627–4664

    Article  MATH  Google Scholar 

  • Miller LA (2011) Fluid dynamics of ventricular filling in the embryonic heart. Cell Biochem Biophys 61(1): 33–45

    Article  Google Scholar 

  • Munoz JJ, Conte V, Miodownik M (2010) Stress-dependent morphogenesis: continuum mechanics and truss systems. Biomech Model Mech 9(4): 451–467

    Article  Google Scholar 

  • Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243: 287–335

    Article  Google Scholar 

  • Rachev A, Gleason RL Jr (2011) Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries. Biomech Model Mech 10(1): 79–93

    Article  Google Scholar 

  • Ramasubramanian A, Nerurkar NL, Achtien KH, Filas BA, Voronov DA, Taber LA (2008) On modeling morphogenesis of the looping heart following mechanical perturbations. J Biomech Eng 130(6): 061018

    Article  Google Scholar 

  • Ramasubramanian A, Taber LA (2008) Computational modeling of morphogenesis regulated by mechanical feedback. Biomech Model Mech 7(2): 77–91

    Article  Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4): 455–467

    Article  Google Scholar 

  • Santhanakrishnan A, Miller LA (2011) Fluid dynamics of heart development. Cell Biochem Biophys 61(1): 1–22

    Article  Google Scholar 

  • Schroeder JA, Jackson LF, Lee DC, Camenisch TD (2003) Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med 81(7): 392–403

    Article  Google Scholar 

  • Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2): 238–252

    Article  Google Scholar 

  • Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ (2008) Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 102(7): 752–760

    Article  Google Scholar 

  • Taber LA (2008) Theoretical study of beloussov’s hyper-restoration hypothesis for mechanical regulation of morphogenesis. Biomech Model Mech 7(6): 427–441

    Article  Google Scholar 

  • Taber LA (2009) Towards a unified theory for morphomechanics. Philos Trans R Soc A 367(1902): 3555–3583

    Article  MathSciNet  MATH  Google Scholar 

  • Taber LA, Humphrey LA (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6): 528–535

    Article  Google Scholar 

  • Taber LA, Zhang J, Perucchio R (2007) Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. J Biomech Eng 129(3): 441–449

    Article  Google Scholar 

  • Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, Fraser SE (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11): e1000246

    Article  Google Scholar 

  • Yalcin HC, Shekhar A, McQuinn TC, Butcher JT (2011) Hemodynamic patterning of the avian atrioventricular valve. Dev Dyn 240(1): 23–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Buskohl.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 2,204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buskohl, P.R., Jenkins, J.T. & Butcher, J.T. Computational simulation of hemodynamic-driven growth and remodeling of embryonic atrioventricular valves. Biomech Model Mechanobiol 11, 1205–1217 (2012). https://doi.org/10.1007/s10237-012-0424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0424-5

Keywords

Navigation