Skip to main content
Log in

Fractional Calculus in Biomechanics: A 3D Viscoelastic Model Using Regularized Fractional Derivative Kernels with Application to the Human Calcaneal Fat Pad

  • Review Article
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A viscoelastic model of the K-BKZ (Kaye, Technical Report 134, College of Aeronautics, Cranfield 1962; Bernstein et al., Trans Soc Rheol 7: 391–410, 1963) type is developed for isotropic biological tissues and applied to the fat pad of the human heel. To facilitate this pursuit, a class of elastic solids is introduced through a novel strain-energy function whose elements possess strong ellipticity, and therefore lead to stable material models. This elastic potential – via the K-BKZ hypothesis – also produces the tensorial structure of the viscoelastic model. Candidate sets of functions are proposed for the elastic and viscoelastic material functions present in the model, including two functions whose origins lie in the fractional calculus. The Akaike information criterion is used to perform multi-model inference, enabling an objective selection to be made as to the best material function from within a candidate set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adolfsson K (2003). Models and numerical procedures for fractional order viscoelasticity. PhD thesis., Chalmers University Tech., Göteborg, Sweden

    Google Scholar 

  • Bagley RL (1987) AIAA J 27:1412–1417

    Google Scholar 

  • Baker CTH, Bocharov GA, Paul CAH, Rihan FA (2005) Appl Numer Math 53:107–129

    Article  MathSciNet  MATH  Google Scholar 

  • Bernstein B, Kearsley EA, Zapas LJ (1963) Trans Soc Rheol 7:391–410

    Article  MATH  Google Scholar 

  • Bernstein B, Kearsley EA, Zapas LJ (1964) J Res NBS B Math Phys 68:103–113

    MATH  MathSciNet  Google Scholar 

  • Boltzmann L (1874) Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-naturwissenschaftlichen Klasse, Wien 70:275–300

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic apporach. 2nd edn. Springer, Berlin Heidelerg New York

    Google Scholar 

  • Caputo M (1967) Geophys J Roy Astr Soc 13:529–539

    Google Scholar 

  • Caputo M, Mainardi F (1971a) Riv Nuovo Cimento 1:161–198

    Article  Google Scholar 

  • Caputo M, Mainardi F (1971b) Pure Appl Geophys 91:134–147

    Article  Google Scholar 

  • Carew EO, Doehring TC, Barber JE, Freed AD, Vesely I (2003) In: L. J. Soslowsky, T. C. Skalak, J. S. Wayne, G. A. Livesay, (eds) Proceedings of the 2003 summer bioengineering conference, ASME, New York, pp 721–722

  • Cavanagh PR, Licata AA, Rice AJ (2005) Gravit Space Biol Bull 18(2):39–58

    PubMed  Google Scholar 

  • Cavanagh PR, Valiant GA, Misevich KW (1984) In: E. C. Frederick, (ed.) Sport shoes and playing surfaces, Human Kinetics Publishers, Champaign, pp 24–46

  • Chen Q, Suki B, An K-N (2004) J Biomech Eng 126:666–671

    Article  PubMed  Google Scholar 

  • Coleman BD, Gurtin ME (1967) J Chem Phys 47:597–613

    Article  Google Scholar 

  • Coleman BD, Mizel VJ (1968) Arch Ration Mech Anal 29:18–31

    MATH  MathSciNet  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD (2002) Nonlinear Dynam 29:3–22

    Article  MATH  MathSciNet  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD (2004) Numer Algorithms 36:31–52

    Article  MATH  MathSciNet  Google Scholar 

  • Diethelm K, Ford NJ, Freed AD, Luchko Yu (2005) Comp Meth Appl Mech Eng 194:743–773

    Article  MATH  MathSciNet  Google Scholar 

  • Diethelm K, Freed AD (2006) Comput Math Appl 51:51–72

    Article  MathSciNet  MATH  Google Scholar 

  • Doehring TC, Carew EO, Vesely I (2004) Ann Biomed Eng 32:223–232

    Article  PubMed  Google Scholar 

  • Douglas JF (2000) In: R. Hilfer, (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 241–330

  • Finger J (1894) Sitzungsberichte der Akademie der Wissenschaften, Wien, 103:1073–1100

  • Flory PJ (1961) Trans Faraday Soc 57:829–838

    Article  MathSciNet  Google Scholar 

  • Freed AD (2004) J Eng Mater Technol 126:38–44

    Article  Google Scholar 

  • Fulchiron R, Verney V, Cassagnau P, Michael A, Levoir P, Aubard J (1993) J Rheol 37:17–34

    Article  Google Scholar 

  • Fung Y-C (1967) Am J Physiol 213:1532–1544

    PubMed  Google Scholar 

  • Fung Y-C (1971) In: Y.-C. Fung, N. Perrone, and M. Anliker, (eds) Biomechanics: Its foundations and objectives Prentice-Hall, Englewood Cliffs, pp 181–208

  • Fung Y-C (1993) Biomechanics: Mechanical properties of living tissues. 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gimbel JA, Sarver JJ, Soslowsky LJ (2004) J Biomech Eng 126:844–848

    Article  PubMed  Google Scholar 

  • Glöckle WG, Nonnenmacher TF (1995) Biophys J 68:46–53

    PubMed  Google Scholar 

  • Gorenflo R, Rubin B (1994) Inverse Probl 10:881–893

    Article  MATH  MathSciNet  Google Scholar 

  • Green G (1841) Trans Cambridge Phil Soc 7:121–140

    Google Scholar 

  • Gross B (1947) J Appl Phys 18:212–221

    Article  MathSciNet  Google Scholar 

  • Hencky H (1928) Z tech Phys 9:215–220

    MATH  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Johnson GA, Livesay GA, Woo SL-Y, Rajagopal KR (1996) J Biomech Eng 118:221–226

    PubMed  Google Scholar 

  • Kaye A (1962) Non-Newtonian flow in incompressible fluids. Technical Report 134, College of Aeronautics, Cranfield

    Google Scholar 

  • Kohlrausch R (1847) Ann Phys Chem 72:353–405

    Google Scholar 

  • Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  • Ledoux WR, Meaney DF, Hillstrom HJ (2004) J Biomech Eng 126:831–837

    Article  PubMed  Google Scholar 

  • Leonov AI (1996) Macromolecules 29:8383–8386

    Article  Google Scholar 

  • Lodge AS (1964) Elastic liquids: an introductory vector treatment of finite-strain polymer rheology. Academic, London

    Google Scholar 

  • Mainardi F (2002) Acoustic Interactions with submerged elastic structures Part IV In: A. Guran, A. Boström, O. Leroy, G. Maze B: series (eds) on stability, vibration and control of systems, World Scientific, New Jersey, pp 97–126

  • Miller-Young JE (2003) Factors affecting human heel pad mechanics: A finite element study. PhD thesis, University of Calgary, Calgary Alberta

    Google Scholar 

  • Miller-Young JE, Duncan NA, Baroud G (2002) J Biomech 35:1523–1531

    Article  PubMed  Google Scholar 

  • Mitton RG (1945) J Soc Leath Trades Ch 29:169–194

    Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus. In: Mathematics in science and engineering, vol. 3. Academic, New York

  • Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In: Mathematics in science and engineering. Academic, San Diego

  • Puso MA, Weiss JA (1998) J Biomech Eng 120:62–70

    PubMed  Google Scholar 

  • Renardy M (1985) Arch Ration Mech Anal 88:83–94

    Article  MATH  MathSciNet  Google Scholar 

  • Rivlin RS (1948) Phil Trans R Soc London A 241:379–397

    MATH  MathSciNet  Google Scholar 

  • Rubin B (1996) Fractional integrals and potentials. Addison Wesley Longman, Harlow

    MATH  Google Scholar 

  • Simhambhatla M, Leonov AI (1993) Rheol Acta 32:589–600

    Article  Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. In: Interdisciplinary applied mathematics, vol. 7. Springer-Verlag, Berlin Heidelberg New York

  • Suki B, Barabási A-L, Lutchen KR (1994) J Appl Physiol 76:2749–2759

    PubMed  Google Scholar 

  • Tuan VK, Gorenflo R (1994) Z Anal Anwend 13:537–545

    MATH  Google Scholar 

  • Tuan VK, Gorenflo R (1994b) Numer Func Anal Opt 15:695–711

    MathSciNet  MATH  Google Scholar 

  • Venzon DJ, Moolgavkar SH (1988) Appl Statistician 37:87–94

    Article  Google Scholar 

  • Williams G, Watts DC (1970) Trans Faraday Soc 66:80–85

    Article  Google Scholar 

  • Williams ML (1964) AIAA J 2:785–808

    Article  MATH  Google Scholar 

  • Yuan H, Ingenito EP, Suki B (1997) J Appl Physiol 83:1420–1431

    PubMed  Google Scholar 

  • Yuan H, Kononov S, Cavalcante FA, Lutchen KR, Ingenito EP, Suki B (2000) J Appl Physiol 89:3–14

    PubMed  Google Scholar 

  • Zener C (1948) Elasticity and anelasticity of metals. University of Chicago, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Freed.

Additional information

Dedicated to Prof. Ronald L. Bagley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, A.D., Diethelm, K. Fractional Calculus in Biomechanics: A 3D Viscoelastic Model Using Regularized Fractional Derivative Kernels with Application to the Human Calcaneal Fat Pad. Biomech Model Mechanobiol 5, 203–215 (2006). https://doi.org/10.1007/s10237-005-0011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-005-0011-0

Keywords

Navigation