Skip to main content
Log in

Analysis of the dynamic mechanisms of upwelling in deep ocean water caused by typhoons

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A typhoon (hurricane) is a very strong local disturbance that can affect ocean water as deep as 1000 m. According to observations and numerical simulations, the decrease in ocean temperature is believed to be caused by inertial pumping, entrainment, upwelling, and a pressure-gradient force; however, these assumptions are mostly based on modeling and do not have a clear dynamic mechanism. Therefore, in this study, the dynamic mechanism of ocean water in a highly-idealized ocean and wind field was calculated. Within the maximum wind range, downwelling in the ocean surface is caused as per the classical Ekman layer transport. Then, a pressure-gradient force drives a cyclo-geostrophic current. Because it provides centripetal force, the pressure-gradient force decreases with increasing depth. These different currents generate friction that is similar to bottom Ekman pumping, leading to upwelling. In the actual ocean, the pressure-gradient force is not only balanced by centripetal force but also baroclinic force. When these forces are balanced, the pressure-gradient force disappears, and the dynamic motion of the ocean water stops. Thus, upwelling no longer occurs. The depth at which this balance occurs is considered to be the maximum depth that a typhoon can impact. Therefore, the pressure-gradient force, caused by typhoons and then offset by centripetal and baroclinic forces, is the original dynamic of upwelling in deep ocean water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

I thank Professor Jianyu Hu for providing the observation data and Professor Yuwu Jiang for helping to guide this research. This work was supported by the Marine Economic Development Subsidy Project of Fujian, China [grant number ZHHY-2019-2]; the National Natural Science Foundation of China [grant number 91958203]; and the National Key R&D Program of China [grant number 2017YFC1404804].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Famei Lei or Shaoping Shang.

Ethics declarations

Declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix

Appendix

The wind-stress \({\varvec{\uptau}}\) is anticlockwise associated with the wind field of the typhoon and we assume that \({\varvec{\uptau}}\) is axis symmetry and divergence free, i.e. \(\nabla \cdot {\varvec{\uptau}}\)=0, as shown in Fig. 11.

Fig. 11
figure 11

The idealized wind-stress and coordinate system translation

The Cartesian coordinate system (\(x\), \(y\), \(z\)) can be translated into a cylinder coordinate system (\(r\), \(\theta\), \(z\)).

$$\left\{\begin{array}{c}r=\sqrt{{x}^{2}+{y}^{2}}\\ \theta =arctan\frac{y}{x}\\ z=z\end{array}\right.$$
(23)

The magnitude of \({\varvec{\uptau}}\) is \(\tau\) and the direction is azimuthal, then:

$$\left\{\begin{array}{l}{\tau }_{x}=-\tau \;sin\theta \\ {\tau }_{y}=\tau \;cos\theta \end{array},\right.$$
(24)

and

$$\left\{\begin{array}{c}x=r\;cos\theta \\ y=r\;sin\theta \end{array}.\right.$$
(25)

Therefore,

$$\frac{\partial r}{\partial x}=\frac{\partial \sqrt{{x}^{2}+{y}^{2}}}{\partial x}=\frac{x}{\sqrt{{x}^{2}+{y}^{2}}}=\frac{x}{r}=cos\theta$$
(26)
$$\frac{\partial r}{\partial y}=\frac{\partial \sqrt{{x}^{2}+{y}^{2}}}{\partial y}=\frac{y}{\sqrt{{x}^{2}+{y}^{2}}}=\frac{y}{r}=sin\theta ,$$
(27)
$$\frac{\partial \theta }{\partial x}=\frac{\partial \left(arctan\frac{y}{x}\right)}{\partial x}=-\frac{sin\theta }{r},$$
(28)
$$\frac{\partial \theta }{\partial y}=\frac{\partial \left(arctan\frac{y}{x}\right)}{\partial y}=\frac{cos\theta }{r},$$
(29)
$$\frac{\partial \theta }{\partial r}=0,$$
(30)
$$\frac{\partial \tau }{\partial \theta }=0.$$
(31)

According to the derivation chain rule, we can obtain:

$$\frac{\partial {\tau }_{y}}{\partial x}=\frac{\partial {\tau }_{y}}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial {\tau }_{y}}{\partial \theta }\frac{\partial \theta }{\partial x}=\frac{\partial \tau }{\partial r}{cos}^{2}\theta +\frac{\tau }{r}{sin}^{2}\theta ,$$
(32)
$$-\frac{\partial {\tau }_{x}}{\partial y}=\frac{\partial {\tau }_{x}}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial {\tau }_{x}}{\partial \theta }\frac{\partial \theta }{\partial y}=\frac{\partial \tau }{\partial r}{sin}^{2}\theta +\frac{\tau }{r}{cos}^{2}\theta ,$$
(33)
$$\frac{\partial {\tau }_{x}}{\partial x}=\frac{\partial {\tau }_{x}}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial {\tau }_{x}}{\partial \theta }\frac{\partial \theta }{\partial x}=-\frac{\partial \tau }{\partial r}cos\theta sin\theta +\frac{\tau }{r}sin\theta cos\theta$$
(34)
$$\frac{\partial {\tau }_{y}}{\partial y}=\frac{\partial {\tau }_{y}}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial {\tau }_{y}}{\partial \theta }\frac{\partial \theta }{\partial y}=\frac{\partial \tau }{\partial r}sin\theta cos\theta -\frac{\tau }{r}cos\theta sin\theta .$$
(35)

Thus, the differential formulae of the surface vertical velocity is:

$$\begin{array}{c}\frac{\partial {w}_{s}}{\partial z}=-\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\\ =-\frac{\sqrt{2}}{{\rho }_{0}fd}{e}^\frac{z}{d}\left[\frac{\partial {\tau }_{x}}{\partial x}\mathrm{sin}\left(\frac{\pi }{4}+\frac{z}{d}\right)+\frac{\partial {\tau }_{y}}{\partial x}\mathrm{cos}\left(\frac{\pi }{4}+\frac{z}{d}\right)-\frac{\partial {\tau }_{x}}{\partial y}\mathrm{cos}\left(\frac{\pi }{4}+\frac{z}{d}\right)+\frac{\partial {\tau }_{y}}{\partial y}\mathrm{sin}\left(\frac{\pi }{4}+\frac{z}{d}\right)\right]\\ =-\frac{\sqrt{2}}{{\rho }_{0}fd}{e}^\frac{z}{d}\left[\left(\frac{\partial {\tau }_{y}}{\partial x}-\frac{\partial {\tau }_{\mathrm{x}}}{\partial y}\right)\mathrm{cos}\left(\frac{\pi }{4}+\frac{z}{d}\right)+\left(\frac{\partial {\tau }_{x}}{\partial x}+\frac{\partial {\tau }_{y}}{\partial y}\right)\mathrm{sin}\left(\frac{\pi }{4}+\frac{z}{d}\right)\right]\\ =-\frac{\sqrt{2}}{{\rho }_{0}fd}{e}^\frac{z}{d}\left[\begin{array}{c}\left(\frac{\partial \tau }{\partial r}{\mathrm{cos}}^{2}\theta +\frac{\tau }{r}{\mathrm{sin}}^{2}\theta +\frac{\partial \tau }{\partial r}{\mathrm{sin}}^{2}\theta +\frac{\tau }{r}{\mathrm{cos}}^{2}\theta \right)\mathrm{cos}\left(\frac{\pi }{4}+\frac{z}{d}\right)+\\ \left(-\frac{\partial \tau }{\partial r}\mathrm{cos}\theta \mathrm{sin}\theta +\frac{\tau }{r}\mathrm{sin}\theta \mathrm{cos}\theta +\frac{\partial \tau }{\partial r}\mathrm{sin}\theta \mathrm{cos}\theta -\frac{\tau }{r}\mathrm{cos}\theta \mathrm{sin}\theta \right)\mathrm{sin}\left(\frac{\pi }{4}+\frac{z}{d}\right)\end{array}\right]\\ =-\frac{\sqrt{2}}{{\rho }_{0}fd}{e}^\frac{z}{d}\left(\frac{\partial \tau }{\partial r}+\frac{\tau }{r}\right)cos\left(\frac{\pi }{4}+\frac{z}{d}\right)\end{array}.$$
(36)

If it is similar to the surface, we can obtain the differential formulae of the bottom Ekman layer using the following:

$$\begin{array}{c}\frac{\partial {w}_{b}}{\partial z}=-\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\\ =-\frac{\partial \overline{u}}{\partial x }\left(1-{e}^{-\frac{z}{d}}cos\frac{z}{d}\right)+\frac{\partial \overline{v}}{\partial x}{e }^{-\frac{z}{d}}sin\frac{z}{d}-\frac{\partial \overline{v}}{\partial y }\left(1-{e}^{-\frac{z}{d}}cos\frac{z}{d}\right)-\frac{\partial \overline{u}}{\partial y}{e }^{-\frac{z}{d}}sin\frac{z}{d}\\ ={e}^{-\frac{z}{d}}\left(\frac{\partial {v}_{\theta }}{\partial r}+\frac{{v}_{\theta }}{r}\right)sin\frac{z}{d}\end{array}.$$
(37)

The solution of Eq. (14) can be calculated as follows:

$$\begin{array}{c}{w}_{s}=\int \frac{\partial {w}_{s}}{\partial z}dz\\ =-\frac{\sqrt{2}}{{\rho }_{0}fd}\left(\frac{\partial \tau }{\partial r}+\frac{\tau }{r}\right)\int {e}^\frac{z}{d}\mathrm{cos}\left(\frac{\pi }{4}+\frac{z}{d}\right)dz\\ \begin{array}{c}=-\frac{\sqrt{2}}{{\rho }_{0}fd}\left(\frac{\partial \tau }{\partial r}+\frac{\tau }{r}\right)\left({e}^{-\frac{\pi }{r}}d\int {e}^{\frac{z}{d}+\frac{\pi }{4}}\mathrm{cos}\left(\frac{z}{d}+\frac{\pi }{4}\right)d\left(\frac{z}{d}+\frac{\pi }{4}\right)\right)\\ =-\frac{\sqrt{2}}{{\rho }_{0}fd}\left(\frac{\partial \tau }{\partial r}+\frac{\tau }{r}\right){e}^{-\frac{\pi }{r}}d\left(\frac{1}{2}{e}^{\frac{z}{d}+\frac{\pi }{r}}\left(\mathrm{sin}\left(\frac{z}{d}+\frac{\pi }{r}\right)+\mathrm{cos}\left(\frac{z}{d}+\frac{\pi }{4}\right)\right)+{C}_{0}\right)\\ =-\frac{1}{{p}_{0}f}{e}^\frac{z}{d}\left(\frac{\partial \tau }{\partial r}+\frac{\tau }{r}\right)\mathrm{cos}\frac{z}{d}+{C}_{1}\end{array}\end{array}$$
(38)

The solution of Eq. (15) can be calculated as follows:

$$\begin{array}{c}{w}_{b}=\int \frac{\partial {w}_{b}}{\partial z}dz\\ =\int \left(\frac{\partial {v}_{\theta }}{\partial r}+\frac{{v}_{\theta }}{r}\right){de}^{-\frac{z}{d}}sin\left(-\frac{z}{d}\right)d\left(-\frac{z}{d}\right)\\ =\left(\frac{\partial {v}_{\theta }}{\partial r}+\frac{{v}_{\theta }}{r}\right)\left(\frac{d}{2}{e}^{-\frac{z}{d}}\left(sin\left(-\frac{z}{d}\right)-cos\left(-\frac{z}{d}\right)\right)+C\right)\\ =\left(\frac{\partial {v}_{\theta }}{\partial r}+\frac{{v}_{\theta }}{r}\right)\left(-\frac{\sqrt{2}d}{2}{e}^{-\frac{z}{d}}sin\left(\frac{z}{d}+\frac{\pi }{4}\right)+C\right)\end{array}$$
(39)

In the cylinder coordinate system, the \(W\) in the entire water column is obtained as follow:

$$\frac{\partial p}{\partial x}=\frac{\partial p}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial p}{\partial \theta }\frac{\partial \theta }{\partial x}$$
(40)
$$\frac{\partial p}{\partial y}=\frac{\partial p}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial p}{\partial \theta }\frac{\partial \theta }{\partial y}$$
(41)

Using Eqs. (4)-(7), the equations are now

$$\frac{\partial p}{\partial x}=cos\theta \frac{\partial p}{\partial r}-\frac{sin\theta }{r}\frac{\partial p}{\partial \theta }$$
(42)
$$\frac{\partial p}{\partial y}=sin\theta \frac{\partial p}{\partial r}+\frac{cos\theta }{r}\frac{\partial p}{\partial \theta }.$$
(43)

Then, we obtain

$$\frac{{\partial }^{2}p}{\partial {x}^{2}}=\frac{\partial }{\partial x}\left(\frac{\partial p}{\partial x}\right)=cos\theta \frac{\partial }{\partial r}\left(\frac{\partial p}{\partial r}cos\theta -\frac{sin\theta }{r}\frac{\partial p}{\partial \theta }\right)-\frac{sin\theta }{r}\frac{\partial }{\partial \theta }\left(\frac{\partial p}{\partial r}cos\theta -\frac{sin\theta }{r}\frac{\partial p}{\partial \theta }\right)$$
(44)
$$\frac{{\partial }^{2}p}{\partial {y}^{2}}=\frac{\partial }{\partial y}\left(\frac{\partial p}{\partial y}\right)=sin\theta \frac{\partial }{\partial r}\left(sin\theta \frac{\partial p}{\partial r}+\frac{cos\theta }{r}\frac{\partial p}{\partial \theta }\right)+\frac{cos\theta }{r}\frac{\partial }{\partial \theta }\left(sin\theta \frac{\partial p}{\partial r}+\frac{cos\theta }{r}\frac{\partial p}{\partial \theta }\right)$$
(45)

The four terms on the right side of the equations (B-14) and (B-15) are as follows:

$$cos\theta \frac{\partial }{\partial r}\left(\frac{\partial p}{\partial r}cos\theta -\frac{sin\theta }{r}\frac{\partial p}{\partial \theta }\right)={cos}^{2}\theta \frac{{\partial }^{2}p}{\partial {r}^{2}}+\frac{sin\theta cos\theta }{{r}^{2}}\frac{\partial p}{\partial \theta }-\frac{sin\theta cos\theta }{r}\frac{{\partial }^{2}p}{\partial r\partial \theta }$$
(46)
$$-\frac{sin\theta }{r}\frac{\partial }{\partial \theta }\left(\frac{\partial p}{\partial r}cos\theta -\frac{sin\theta }{r}\frac{\partial p}{\partial \theta }\right)=-\frac{sin\theta cos\theta }{r}\frac{{\partial }^{2}p}{\partial r\partial \theta }+\frac{{sin}^{2}\theta }{r}\frac{\partial p}{\partial r}+\frac{sin\theta cos\theta }{{r}^{2}}\frac{\partial p}{\partial \theta }+\frac{{sin}^{2}\theta }{{r}^{2}}\frac{{\partial }^{2}p}{\partial {\theta }^{2}}$$
(47)
$$sin\theta \frac{\partial }{\partial r}\left(sin\theta \frac{\partial p}{\partial r}+\frac{cos\theta }{r}\frac{\partial p}{\partial \theta }\right)={sin}^{2}\theta \frac{{\partial }^{2}p}{\partial {r}^{2}}-\frac{sin\theta cos\theta }{{r}^{2}}\frac{\partial p}{\partial \theta }+\frac{sin\theta cos\theta }{r}\frac{{\partial }^{2}p}{\partial r\partial \theta }$$
(48)
$$\frac{cos\theta }{r}\frac{\partial }{\partial \theta }\left(sin\theta \frac{\partial p}{\partial r}+\frac{cos\theta }{r}\frac{\partial p}{\partial \theta }\right)=\frac{{cos}^{2}\theta }{r}\frac{\partial p}{\partial r}+\frac{sin\theta cos\theta }{r}\frac{{\partial }^{2}p}{\partial \theta \partial r}-\frac{sin\theta cos\theta }{{r}^{2}}\frac{\partial p}{\partial \theta }+\frac{{cos}^{2}\theta }{{r}^{2}}\frac{{\partial }^{2}p}{\partial {\theta }^{2}}.$$
(49)

Therefore, we get

$${\nabla }^{2}p=\frac{{\partial }^{2}p}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial p}{\partial r}+\frac{1}{{r}^{2}}\frac{{\partial }^{2}p}{\partial {\theta }^{2}}$$
(50)

Along an isobar, the pressure is const, Thus

$$\frac{\partial p}{\partial \theta }=0$$
(51)

and

$$\frac{{\partial }^{2}p}{\partial {\theta }^{2}}=0.$$
(52)

Then, we obtain the Laplace operator of \(p\) in the cylinder coordinate system:

$${\nabla }^{2}p=\frac{{\partial }^{2}p}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial p}{\partial r}.$$
(53)

So, we get the vertical velocity caused by bottom Ekman at the role of \(p\) as follow:

$$W=\frac{{d}_{B}}{2{\rho }_{0}f}\left(\frac{{\partial }^{2}p}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial p}{\partial r}\right).$$
(54)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Dai, H., Shang, S. et al. Analysis of the dynamic mechanisms of upwelling in deep ocean water caused by typhoons. Ocean Dynamics 73, 517–529 (2023). https://doi.org/10.1007/s10236-023-01563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-023-01563-x

Keywords

Navigation