Skip to main content
Log in

Numerical Simulation and Risk Assessment of Water Inrush in a Fault Zone that Contains a Soft Infill

Numerische Simulation und Risikoabschätzung eines Wassereinbruchs in einer Störungszone mit weicher Füllung

Simulación numérica y evaluación de riesgo de inundación en una zona de falla que contiene relleno blando

填充软弱物的断层带的突水数值模拟与风险评价

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A numerical model was established to simulate the activation of the fault zone with a soft infill during a water inrush event. Distribution of the failed areas at different times was acquired. Then, a parametric sweep analysis was conducted to see the influence of permeability. By analyzing the results, a new parameter called the “activation coefficient” was proposed to characterize the fault zone activation process. A functional relationship was established between the activation coefficient and permeability. A series of numerical cases with different conditions were calculated to determine the parameters in the function. A method to evaluate the risk of water inrush is proposed, based on these results. By comparing the acceptable and actual values of the activation coefficient, the activation speed of the fault zone, and time for excavation and support can be determined; thus, the risk of water inrush can be evaluated. The research results were used during construction of line 1 of the Qingdao subway tunnel engineering project in China, which provided valuable data for assessing the risk of water inrush in a mine.

Zusammenfassung

Es wurde ein numerisches Modell für die Simulation der Aktivierung von Störungszonen mit weicher Füllung bei einem Wassereinbruch entwickelt. Die Verteilung von Versagensbereichen zu unterschiedlichen Zeiten wurde erhalten. Danach wurde der Einfluss der Permeabilität untersucht. Die Analyse der Ergebnisse führte zum Vorschlag des neuen Parameters „Aktivierungskoeffizient“, der den Aktivierungsprozess der Störung charakterisiert. Ein funktionaler Zusammenhang zwischen dem Aktivierungskoeffizienten und der Permeabilität wurde hergestellt. Um die Parameter in der Funktion zu ermitteln, wurde eine Folge von Fällen mit unterschiedlichen Bedingungen berechnet. Basierend darauf wurde eine Methode zur Bewertung des Risikos eines Wassereinbruchs vorgeschlagen. Durch Vergleich des akzeptablen und des aktuellen Aktivierungskoeffizienten können die Aktivierungsgeschwindigkeit der Störungszone und die Zeit für Aushub und Sicherung ermittelt werden. So kann das Risiko eines Wassereinbruchs bewertet werden. Die Forschungsergebnisse wurden bei der Errichtung des Quindao U-Bahn-Tunnels in China benutzt. Das erbrachte wertvolle Daten für die Bewertung von Wassereinbrüchen in Bergwerke.

Resumen

Se estableció un modelo numérico para simular la activación de la zona de falla con relleno blanco durante un evento de irrupción de agua. Se adquirió la distribución de las áreas fallidas en diferentes momentos. Luego, se realizó un análisis de barrido paramétrico para ver la influencia de la permeabilidad. Al analizar los resultados, se propuso un nuevo parámetro llamado “coeficiente de activación” para caracterizar el proceso de activación de la zona de falla. Se estableció una relación funcional entre el coeficiente de activación y la permeabilidad. Se calculó una serie de casos numéricos con diferentes condiciones para determinar los parámetros en la función. Se propone un método para evaluar el riesgo de irrupción de agua, basado en estos resultados. Al comparar los valores aceptables y reales del coeficiente de activación, se puede determinar la velocidad de activación de la zona de falla y el tiempo de excavación y soporte; por lo tanto, se puede evaluar el riesgo de entrada de agua. Los resultados de la investigación fueron utilizados durante la construcción de la línea 1 del proyecto de ingeniería del túnel del metro de Qingdao en China, que proporcionó datos valiosos para evaluar el riesgo de la entrada de agua en una mina.

抽象

建立数值模型模拟突水期间充填软弱物的断层带的活化,获取了各时段失效破坏区的分布,经参数扫描观察渗透性的影响。在结果分析基础上,提出一种新的参数 “活化系数”来描述断层带活化过程。建立了活化系数与渗透系数的功能函数关系,并利用系列不同情况数值案例来确定该函数参数。由此,提出了一种突水风险评价方法。通过可接受和实际活化系数参数值对比,确定断层带活化速度和撤离及掩护时间,从而实现突水风险评价。研究结果应用于中国青岛地铁1号线工程,为矿井突水风险评价提供了重要信息数据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bazˇant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Struct 16(3):155–177

    Google Scholar 

  • Donnelly LJ (2006) A review of coal mining induced fault reactivation in Great Britain. Q J Eng Geol Hydrogeol 39(1):5–50

    Article  Google Scholar 

  • Fang Z, Harrison JP (2002) Development of a local degradation approach to the modelling of brittle fracture in heterogeneous rocks. Int J Rock Mech Min 39(4):443–457

    Article  Google Scholar 

  • Guo H, Adhikary D, Craig M (2009) Simulation of mine water inflow and gas emission during longwall mining. Rock Mech Rock Eng 42(1):25–51

    Article  Google Scholar 

  • Hwang JH, Lu CC (2007) A semi-analytical method for analyzing the tunnel water inflow. Tunn Undergr Space Technol 22(1):39–46

    Article  Google Scholar 

  • Klerck PA (2000) The finite element modeling of discrete fracture in quasi-brittle materials. PhD diss, University of Wales, Swansea

  • Kolymbas D, Wagner P (2007) Groundwater ingress to tunnels—the exact analytical solution. Tunn Undergr Space Technol 22(1):23–27

    Article  Google Scholar 

  • Li X, Li Y, Zhou S (2011) Study and application of forecasting system for water inrush under high pressure in Xiamen submarine tunnel construction based on GIS. Proc Environ Sci 10:999–1005

    Article  Google Scholar 

  • Li Z, Wang X, Xie L (2012) Risk evaluation and comprehensive geological prediction based on fuzzy wavelet neural network during tunneling in karst area. Electron J Geotech Eng 17:2155–2167

    Google Scholar 

  • Li SC, Zhou ZQ, Li LP, Xu ZH, Zhang QQ, Shi SS (2013a) Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunn Undergr Space Technol 38:50–58

    Article  Google Scholar 

  • Li SC, Zhou ZQ, Li LP, Shi SS, Xu ZH (2013b) Risk evaluation theory and method of water inrush in karst tunnels. Chin J Rock Mech Eng 32(9):1858–1867

    Google Scholar 

  • Li LP, Zhou ZQ, Li SC, Xue YG, Xu ZH, Shi SS (2015a) An attribute synthetic evaluation system for risk assessment of floor water inrush in coal mines. Mine Water Environ 34:288–294

    Article  Google Scholar 

  • Li LP, Lei T, Li S, Zhang Q, Xu Z, Shi S, Zhou Z (2015b) Risk assessment of water inrush in karst tunnels and software development. Arab J Geosci 8(4):1843–1854

    Article  Google Scholar 

  • Li SC, Liu B, Nie L, Liu Z, Tian M, Wang S, Su X, Guo Q (2015c) Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: a review. J Rock Mech Geotech Eng 7(4):469–478

    Article  Google Scholar 

  • Lu Y, Wang L (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comput Geotech 67:157–171

    Article  Google Scholar 

  • Lu YL, Elsworth D, Wang LG (2013) Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks. Comput Geotech 49(4):226–244

    Article  Google Scholar 

  • Ma J, Zhang YM (2012) A new dynamic assessment for multi-parameters information of water inrush in coal mine. Proc Eng 26:759–764

    Google Scholar 

  • Miao XX, Cui XM, Wang JA, Xu JL (2011) The height of fractured water-conducting zone in undermined rock strata. Eng Geol 20(1):32–39

    Article  Google Scholar 

  • Shi L, Singh RN (2001) Study of mine water inrush from floor strata through faults. Mine Water Environ 20(3):140–147

    Article  Google Scholar 

  • Suidan M, Schnobrich WC (1973) Finite element analysis of reinforced concrete. J Struct Div ASCE 99:2109–2122

    Google Scholar 

  • The National Standards Compilation Group of People’s Republic of China (1995) GB50218—94 Standard for engineering classification of rock mass. China Planning Press, Beijing (in Chinese)

    Google Scholar 

  • Touhidi-Baghini A (1998) Absolute permeability of McMurray formation oil sands at low confining stresses. PhD diss, Univ of Alberta, Canada

  • Wang JA, Park H (2003) Coal mining above a confined aquifer. Int J Rock Mech Min 40(4):537–551

    Article  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 13(2):293–297

    Google Scholar 

  • Wu Q, Zhu B, Liu SQ (2011) Flow-solid coupling simulation method analysis and time identification of lagging waterinrush near mine fault belt. Chin J Rock Mech Eng 30(1):93–104 (in Chinese)

    Google Scholar 

  • Xiao GC, Irvin RA, Farmer IW (1991) Water inflows into longwall workings in the proximity of aquifer rocks. Min Eng 151(358):9–13

    Google Scholar 

  • Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360

    Article  Google Scholar 

  • Zhang HQ, He YN, Tang CA, Ahmad B, Han LJ (2009) Application of an improved flow-stress-damage model to the critically assessment of water inrush in a mine: a case study. Rock Mech Rock Eng 41(6):911–930

    Article  Google Scholar 

  • Zuo JP, Peng SP, Li YJ, Chen ZH, Xie HP (2009) Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine. China. Int J Coal Geol 78(4):276–287

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the General Program of the National Natural Science Foundation of China (51779133), National Key R&D Plan of China (2016YFC0801604), and Joint Funds of the National Natural Science Foundation of China (U1706223). The authors thank the editors and two anonymous reviewers for their careful work and thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Liu, R. & Zhang, Q. Numerical Simulation and Risk Assessment of Water Inrush in a Fault Zone that Contains a Soft Infill. Mine Water Environ 38, 667–675 (2019). https://doi.org/10.1007/s10230-019-00621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-019-00621-5

Keywords

Navigation