Skip to main content
Log in

A New Computational Approach to Ideal Theory in Number Fields

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Let K be the number field determined by a monic irreducible polynomial f(x) with integer coefficients. In previous papers we parameterized the prime ideals of K in terms of certain invariants attached to Newton polygons of higher order of f(x). In this paper we show how to carry out the basic operations on fractional ideals of K in terms of these constructive representations of the prime ideals. From a computational perspective, these results facilitate the manipulation of fractional ideals of K avoiding two heavy tasks: the construction of the maximal order of K and the factorization of the discriminant of f(x). The main computational ingredient is the Montes algorithm, which is an extremely fast procedure to construct the prime ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.-D. Bauch, E. Nart, H.D. Stainsby, Complexity of OM factorizations of polynomials over local fields. arXiv:1204.4671v1 [math.NT].

  2. R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Abh. K. Ges. Wiss. Göttingen 23, 1–23 (1878).

    Google Scholar 

  3. D. Ford, O. Veres, On the complexity of the Montes ideal factorization algorithm, in Algorithmic Number Theory, 9th International Symposium, ANTS-IX, Nancy, France, July 19–23, 2010, ed. by G. Hanrot, F. Morain, E. Thomé. LNCS (Springer, Berlin, 2010).

    Google Scholar 

  4. J. Guàrdia, J. Montes, E. Nart, Okutsu invariants and Newton polygons, Acta Arith. 145(1), 83–108 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, J. Théor. Nr. Bordx. 23(3), 667–696 (2011).

    Article  MATH  Google Scholar 

  6. J. Guàrdia, J. Montes, E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Am. Math. Soc. 364(1), 361–416 (2012).

    Article  MATH  Google Scholar 

  7. J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons and integral bases. arXiv:0902.3428v3 [math.NT].

  8. J. Guàrdia, J. Montes, E. Nart, Arithmetic in big number fields: The ‘+Ideals’ package. arXiv:1005.4596v1 [math.NT].

  9. J. Guàrdia, E. Nart, S. Pauli, Single-factor lifting and factorization of polynomials over local fields, J. Symb. Comput. 47, 1318–1346 (2012).

    Article  MATH  Google Scholar 

  10. K. Hensel, Theorie der Algebraischen Zahlen (Teubner, Leipzig, 1908).

    MATH  Google Scholar 

  11. F. Hess, Computing Riemann–Roch spaces in algebraic function fields and related topics, J. Symb. Comput. 33, 425–445 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. MacLane, A construction for absolute values in polynomial rings, Trans. Am. Math. Soc. 40, 363–395 (1936).

    Article  MathSciNet  Google Scholar 

  13. S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Math. J. 2, 492–510 (1936).

    Article  MathSciNet  Google Scholar 

  14. J. Montes, Polígonos de Newton de Orden Superior y Aplicaciones Aritméticas, Tesi Doctoral, Universitat de Barcelona, 1999.

  15. E. Nart, Local computation of differents and discriminants, Math. Comput., to appear. arXiv:1205.1340v1 [math.NT].

  16. K. Okutsu, Construction of integral basis, I, II, Proc. Jpn. Acad., Ser. A, Math. Sci. 58, 47–49, 87–89 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  17. Ø. Ore, Zur Theorie der algebraischen Körper, Acta Math. Djursholm 44, 219–314 (1923).

    Article  MathSciNet  MATH  Google Scholar 

  18. Ø. Ore, Bestimmung der Diskriminanten algebraischer Körper, Acta Math. Djursholm 45, 303–344 (1925).

    Article  MathSciNet  MATH  Google Scholar 

  19. Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99, 84–117 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Pauli, Factoring polynomials over local fields, II, in Algorithmic Number Theory, 9th International Symposium, ANTS-IX, Nancy, France, July 19–23, 2010, ed. by G. Hanrot, F. Morain, E. Thomé. LNCS (Springer, Berlin, 2010).

    Google Scholar 

  21. J. Rasmussen, personal communication.

Download references

Acknowledgements

Research partially supported by MTM2009-13060-C02-02 and MTM2009-10359 from the Spanish MEC

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Nart.

Additional information

Communicated by Felipe Cucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guàrdia, J., Montes, J. & Nart, E. A New Computational Approach to Ideal Theory in Number Fields. Found Comput Math 13, 729–762 (2013). https://doi.org/10.1007/s10208-012-9137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9137-5

Keywords

Mathematics Subject Classification (2010)

Navigation