Skip to main content
Log in

An Exact Order of Discrepancy of the Smolyak Grid and Some General Conclusions in the Theory of Numerical Integration

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper examines the relationship between the degree of uniformity of distribution of grids, including Smolyak grids, with the intention of choosing weights to obtain efficient quadrature formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and below, the notation c(…) indicates positive values, generally speaking different in different expressions, and depending only on the parameters in brackets. For positive A and arbitrary B, the notation B α,β,… A means |B|≤c(α,β,…)A, and for positive A and B the notation A α,β,… B means A α,β,… B α,β,… A.

References

  1. N.S. Bakhvalov, On the approximate calculation of integrals, Vestnik MGU Ser. Math. Mech. 4, 3–18 (1959) (in Russian).

    Google Scholar 

  2. J. Beck, W.W.L. Chen, Irregularities of Distribution (Cambridge University Press, Cambridge, 1987).

    Book  MATH  Google Scholar 

  3. J. Dick, F.Y. Kuo, Constructing good lattice rules with millions of points, in Monte Carlo and Quasi-Monte Carlo Methods 2002, ed. by H. Niederreiter (Springer, Berlin, 2004), pp. 181–197.

    Chapter  Google Scholar 

  4. J. Dick, F.Y. Kuo, Reducing the construction cost of the component-by-component construction of good lattice rules, Math. Comput. 73, 1967–1988 (2004).

    MathSciNet  MATH  Google Scholar 

  5. J. Dick, F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration (Cambridge University Press, Cambridge, 2010).

    MATH  Google Scholar 

  6. J. Dick, I.H. Sloan, X. Wang, H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights, Numer. Math. 103, 63–97 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Drmota, R.F. Tichy, Sequences, Discrepancies and Applications (Springer, Berlin, 1997).

    MATH  Google Scholar 

  8. E. Hlawka, F. Firneis, P. Zinterhof, Zahlentheoretische Methoden in der numerischen Mathematik (1981). Oldenbourg.

    MATH  Google Scholar 

  9. L.-K. Hua, Y. Wang, Applications of Number Theory to Numerical Analysis (Springer, Berlin, 1981).

    MATH  Google Scholar 

  10. N.M. Korobov, Number-Theoretic Methods in Approximate Analysis (Fizmatgiz, Moscow, 1963) (in Russian).

    MATH  Google Scholar 

  11. N.M. Korobov, Number-Theoretic Methods in Approximate Analysis (MCCME, Moscow, 2004) (in Russian).

    MATH  Google Scholar 

  12. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences (Wiley, New York, 1974).

    MATH  Google Scholar 

  13. N.Z. Nauryzbaev, N. Temirgaliev, On the order of discrepancy of the Smolyak grid, Math. Notes 85, 897–901 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Novak, I.H. Sloan, H. Woźniakowski, Tractability of approximation for weighted Korobov spaces on classical and quantum computers, Found. Comput. Math. 4, 121–155 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems: Volume I, Linear Information (2008). European Mathematical Society.

    Book  MATH  Google Scholar 

  16. S.H. Paskov, Average case complexity for multivariate integration for smooth functions, J. Complex. 9, 291–312 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. K.F. Roth, On irregularities of distribution, Mathematika 1, 73–79 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Sard, Best approximate integration formulas, best approximation formulas, Am. J. Math. 71, 80–91 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  19. I.F. Sharygin, A lower estimate for the error of quadrature formulas for certain classes of functions, U.S.S.R. Comput. Math. Math. Phys. 3, 489–497 (1963).

    Article  MATH  Google Scholar 

  20. W. Sickel, T. Ullrich, The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness, East J. Approx. 13, 387–425 (2007).

    MathSciNet  Google Scholar 

  21. M.B. Sikhov, N. Temirgaliev, On an algorithm for construction uniformly distribution Korobov grids, Math. Notes 87, 916–917 (2010).

    Article  MathSciNet  Google Scholar 

  22. I.H. Sloan, H. Woźniakowski, Tractability of multivariate integration for weighted Korobov classes, J. Complex. 17, 697–721 (2001).

    Article  MATH  Google Scholar 

  23. I.H. Sloan, H. Woźniakowski, Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces, J. Complex. 18, 479–499 (2002).

    Article  MATH  Google Scholar 

  24. S.A. Smolyak, Quadrature and interpolation formulas for tensor product of certain classes of functions, Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963).

    MathSciNet  MATH  Google Scholar 

  25. S.A. Smolyak, On optimal restoration of functions and functional of them, Candidate Dissertation, Moscow (1965).

  26. I.M. Sobol, Multidimensional Quadrature Formulae and Haar Functions (Nauka, Moscow, 1969) (in Russian).

    Google Scholar 

  27. N. Temirgaliev, Application of divisor theory to the numerical integration of periodic functions of several variables, Math. USSR Sb. 181, 490–505 (1990).

    MathSciNet  Google Scholar 

  28. N. Temirgaliev, Number-theoretical methods and probability-theoretical approach to problems in analysis: theory of embeddings and approximations, absolute convergence and Fourier series transforms, Vestnik ENU 3, 90–144 (1997).

    Google Scholar 

  29. N. Temirgaliev, Classes U s (β,θ,α,ψ) and quadrature formulas, Dokl. Math. 68, 414–417 (2003).

    Google Scholar 

  30. N. Temirgaliev, Computer (numerical) width. Algebraic theory of functions and harmonic analysis in restoration problems (quasi-Monte Carlo method). Theory of embeddings and approximation, Fourier series, Vestnik ENU, Special issue, 1–194 (2009).

    Google Scholar 

  31. N. Temirgaliev, Tensor products of functionals and their application, Dokl. Math. 81, 78–82 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Temirgaliev, Y. Bailov, A. Zhubanisheva, General algorithm for the numerical integration of periodic function of several variables, Dokl. Math. 76, 681–685 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Temirgaliev, S.S. Kudaibergenov, A.A. Shomanova, An application of tensor products of functionals in problems of numerical integration, Izv. RAN Ser. Math. 73, 393–434 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Temirgaliev, S.S. Kudaibergenov, A.A. Shomanova, Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems, Russ. Math. (Izv. VUZ) 54, 45–62 (2010).

    MathSciNet  MATH  Google Scholar 

  35. V.N. Temlyakov, Quadrature formulae and recovery of number-theoretical nets from nodal values for classes of functions with small degree of smoothness, Russ. Math. Surv. 40, 223–224 (1985).

    Article  MATH  Google Scholar 

  36. V.N. Temlyakov, Approximate recovery of periodic functions of several variables, Math. USSR Sb. 56, 249–261 (1987).

    Article  Google Scholar 

  37. T. Ullrich, Smolyak’s algorithm, sparse grid approximation and periodic function spaces with dominating mixed smoothness, Doctoral (Ph.D.) thesis, Jena (2007).

  38. S.M. Voronin, On quadrature formulas, Izv. RAN Ser. Math. 45, 417–422 (1995).

    Article  MathSciNet  Google Scholar 

  39. S.M. Voronin, The construction of quadrature formulae, Izv. RAN Ser. Math. 59, 665–670 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  40. S.M. Voronin, V.I. Skalyga, On numerical integration algorithms, Izv. RAN Ser. Math. 60, 887–891 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  41. S.M. Voronin, Selected Works: Mathematics, Moscow State Technical University n.a. N.E. Bauman, Moscow (2006) (in Russian).

  42. S.M. Voronin, N. Temirgaliev, Quadrature Formulas Associated with Divisors of the Field of Gaussian Numbers, Math. Notes 46, 34–41 (1989).

    MathSciNet  Google Scholar 

  43. G.W. Wasilkowski, H. Woźniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complex. 11, 1–56 (1995).

    Article  MATH  Google Scholar 

  44. G.W. Wasilkowski, H. Woźniakowski, A survey of average case complexity for linear multivariate problems, Russ. Math. (Izv. VUZ) 53, 1–14 (2009).

    Google Scholar 

  45. A.Z. Zhubanisheva, N. Temirgaliev, Z.N. Temirgalieva, Application of divisor theory to the construction of tables of optimal coefficients for quadrature formulas, Comput. Math. Math. Phys. 49, 12–22 (2009).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurlan Temirgaliyev.

Additional information

Communicated by Henryk Woźniakowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauryzbayev, N., Temirgaliyev, N. An Exact Order of Discrepancy of the Smolyak Grid and Some General Conclusions in the Theory of Numerical Integration. Found Comput Math 12, 139–172 (2012). https://doi.org/10.1007/s10208-012-9116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9116-x

Keywords

Mathematics Subject Classification

Navigation