Skip to main content
Log in

Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

For a real square-free multivariate polynomial F, we treat the general problem of finding real solutions of the equation F=0, provided that the real solution set {F=0} is compact. We allow that the equation F=0 may have singular real solutions. We are going to decide whether this equation has a non-singular real solution and, if this is the case, we exhibit one for each generically smooth connected component of {F=0}. We design a family of elimination algorithms of intrinsic complexity which solves this problem. In the worst case, the complexity of our algorithms does not exceed the already known extrinsic complexity bound of (nd)O(n) for the elimination problem under consideration, where n is the number of indeterminates of F and d its (positive) degree. In the case that the real variety defined by F is smooth, there already exist algorithms of intrinsic complexity that solve our problem. However, these algorithms cannot be used in case when F=0 admits F-singular real solutions.

An elimination algorithm of intrinsic complexity presupposes that the polynomial F is encoded by an essentially division-free arithmetic circuit of size L (i.e., F can be evaluated by means of L additions, subtractions and multiplications, using scalars from a previously fixed real ground field, say ℚ) and that there is given an invariant δ(F) which (roughly speaking) depends only on the geometry of the complex hypersurface defined by F. The complexity of the algorithm (measured in terms of the number of arithmetic operations in ℚ) is then linear in L and polynomial in n,d and δ(F).

In order to find such a geometric invariant δ(F), we consider suitable incidence varieties which in fact are algebraic families of dual polar varieties of the complex hypersurface defined by F. The generic dual polar varieties of these incidence varieties are called bipolar varieties of the equation F=0. The maximal degree of these bipolar varieties then becomes the essential ingredient of our invariant δ(F).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aubry, F. Rouillier, M. Safey El Din, Real solving for positive dimensional systems, J. Symb. Comput. 34, 543–560 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bank, M. Giusti, J. Heintz, G.M. Mbakop, Polar varieties, real equation solving, and data structures: the hypersurface case, J. Complex. 13, 5–27 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bank, M. Giusti, J. Heintz, G.M. Mbakop, Polar varieties and efficient real elimination, Math. Z. 238, 115–144 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bank, M. Giusti, J. Heintz, L.M. Pardo, Generalized polar varieties and an efficient real elimination procedure, Kybernetika 40, 519–550 (2004).

    MathSciNet  Google Scholar 

  5. B. Bank, M. Giusti, J. Heintz, L.M. Pardo, Generalized polar varieties: geometry and algorithms, J. Complex. 21, 377–412 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bank, M. Giusti, J. Heintz, L.M. Pardo, On the intrinsic complexity of point finding in real singular hypersurfaces, Inf. Process. Lett. 109, 1141–1144 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bank, M. Giusti, J. Heintz, L.M. Pardo, Bipolar varieties and real solving of a singular polynomial equation, Jaen J. Approx. 2(1), 65–77 (2010).

    MathSciNet  Google Scholar 

  8. B. Bank, M. Giusti, J. Heintz, M. Safey El Din, E. Schost, On the geometry of polar varieties, Appl. Algebra Eng. Commun. Comput. 21, 33–83 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Basu, R. Pollack, M.-F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM 43, 1002–1045 (1996).

    MathSciNet  MATH  Google Scholar 

  10. S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn. (Springer, Berlin, 2006).

    MATH  Google Scholar 

  11. J. Bochnak, M. Coste, M.-F. Roy, Géométrie Algébrique Réelle (Springer, Berlin, 1987).

    MATH  Google Scholar 

  12. J.P. Brasselet, Milnor classes via polar varieties, in Singularities in Algebraic and Analytic Geometry, ed. by C.G. Melles et al., Contemp. Math., vol. 266 (AMS, Providence, 2000), pp. 181–187.

    Chapter  Google Scholar 

  13. P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, with the collaboration of Thomas Lickteig. Grundlehren der Mathematischen Wissenschaften, vol. 315 (Springer, Berlin, 1997).

    MATH  Google Scholar 

  14. J.F. Canny, Some algebraic and geometric computations in PSPACE, in ACM Symposium on Theory of Computing (STOC) (1988), pp. 460–467.

    Google Scholar 

  15. D. Castro, M. Giusti, J. Heintz, G. Matera, L.M. Pardo, The hardness of polynomial equation solving, Found. Comput. Math. 3, 347–420 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Coste, M.-F. Roy, Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets, J. Symb. Comput. 5, 121–129 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Demazure, Catastrophes et Bifurcations (Ellipses, Paris, 1989).

    MATH  Google Scholar 

  18. A. Dubson, Courants sous-analytiques, théorie d’intersection des ensembles analytiques, invariants numériques des singularités et applications. Thèse d’État, Université Paris VII (1982).

  19. C. Durvye, Evaluation techniques for zero-dimensional primary decomposition, J. Symb. Comput. 44, 1089–1113 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Durvye, G. Lecerf, A concise proof of the Kronecker polynomial system solver from scratch, Expo. Math. 26, 101–139 (2008).

    MathSciNet  MATH  Google Scholar 

  21. N. Fitchas, A. Galligo, J. Morgenstern, Algorithmes rapides en séquentiel et en parallèle pour l’élimination des quantificateurs en géométrie élémentaire, Publ. Math. Univ. Paris VII 32, 103–145 (1990). Structures algébriques ordonnées, Volume I, Sélect. Expos. Sémin., Paris, 1984–1987.

    MathSciNet  Google Scholar 

  22. W. Fulton, Intersection Theory (2nd edn.) Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. (Springer, Berlin, 1998). Folge 2

    Book  MATH  Google Scholar 

  23. M. Giusti, J. Heintz, Kronecker’s smart, little black boxes, in Foundations of Computational Mathematics, Conference, Oxford, GB, July 18–28, 1999, ed. by R.A. DeVore et al., Lond. Math. Soc. Lect. Note Ser., vol. 284 (Cambridge University Press, Cambridge, 2001), pp. 69–104.

    Google Scholar 

  24. M. Giusti, J. Heintz, J.E. Morais, L.M. Pardo, When polynomial equation systems can be “solved” fast? in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, ed. by G. Cohen, M. Giusti, T. Mora, LNCS, vol. 948 (Springer, Berlin, 1995), pp. 205–231.

    Google Scholar 

  25. M. Giusti, J. Heintz, K. Hägele, J.E. Morais, J.L. Montaña, L.M. Pardo, Lower bounds for Diophantine approximations, J. Pure Appl. Algebra 117–118, 277–317 (1997).

    Article  Google Scholar 

  26. M. Giusti, J. Heintz, J.E. Morais, L.M. Pardo, Le rôle des structures de données dans les problèmes d’élimination, C.R. Acad. Sci. Paris Sér. I Math. 325, 1223–1228 (1997).

    MathSciNet  MATH  Google Scholar 

  27. M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, L.M. Pardo, Straight-line programs in geometric elimination theory, J. Pure Appl. Algebra 124, 101–146 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Giusti, G. Lecerf, B. Salvy, A Gröbner free alternative for polynomial system solving, J. Complex. 17, 154–211 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Grigor’ev, N. Vorobjov, Solving systems of polynomial inequalities in subexponential time, J. Symb. Comput. 5, 37–64 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Hägele, J.L. Montaña, Polynomial random test for the equivalence of integers given by arithmetic circuits. Depto. de Matematicas, Estadistica y Computacion, Universidad de Cantabria, 4 (1997).

  31. J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theor. Comput. Sci. 24, 239–277 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Heintz, M.-F. Roy, P. Solernó, On the complexity of semialgebraic sets, in IFIP Information Processing, vol. 89, ed. by G.X. Ritter (Amsterdam, Elsevier, 1989), pp. 293–298.

    Google Scholar 

  33. J. Heintz, M.-F. Roy, P. Solernó, Complexité du principe de Tarski–Seidenberg, C.R. Acad. Sci., Paris, Sér. I Math 309, 825–830 (1989).

    MATH  Google Scholar 

  34. J. Heintz, M.-F. Roy, P. Solernó, Sur la complexité du principe de Tarski–Seidenberg, Bull. Soc. Math. Fr. 18, 101–126 (1990).

    Google Scholar 

  35. J. Heintz, T. Krick, S. Puddu, J. Sabia, A. Waissbein, Deformation techniques for efficient polynomial equation solving, J. Complex. 16, 70–109 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Heintz, G. Matera, A. Waissbein, On the time-space complexity of geometric elimination procedures, Appl. Algebra Eng. Commun. Comput. 11, 239–296 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  37. J.P.G. Henry, M. Merle, Limites d’espaces tangents et transversalité de variétés polaires, in Algebraic Geometry, Proc. Int. Conf., La Rabida/Spain 1981. Lect. Notes Math., vol. 961 (1982), pp. 189–199.

    Google Scholar 

  38. T. Krick, Straight-line programs in polynomial equation solving, in Foundations of Computational Mathematics: Minneapolis 2002 (FoCM 2002), ed. by F. Cucker et al., London Mathematical Society Lecture Note Ser., vol. 312 (Cambridge University Press, Cambridge, 2004), pp. 96–136.

    Chapter  Google Scholar 

  39. D.T. Lê, B. Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. Math. (2) 114, 457–491 (1981).

    Article  MATH  Google Scholar 

  40. G. Lecerf, Quadratic Newton iteration for systems with multiplicity, Found. Comput. Math. 2, 247–293 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Lecerf, Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers, J. Complex. 19, 564–596 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Lecerf, Kronecker software package. http://www.math.uvsq.fr/~lecerf/software/index.html.

  43. L. Lehmann, Wavelet-Konstruktion als Anwendung der algorithmischen reellen algebraischen Geometrie. Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2007). http://edoc.hu-berlin.de/docviews/abstract.php?lang=ger&id=27952.

  44. L. Lehmann, A. Waissbein, Wavelets and semi-algebraic sets, in WAIT 2001, Anales JAIIO, vol. 30, ed. by M. Frias, J. Heintz (2001), pp. 139–155.

    Google Scholar 

  45. H.C. Mork, R. Piene, Polars of real singular plane curves, in Algorithms in Algebraic Geometry, based on the workshop, Minneapolis, MN, USA, September 18–22, 2006, ed. by A. Dickenstein et al., The IMA Volumes in Mathematics and Its Applications, vol. 146 (Springer, New York, 2008), pp. 99–115.

    Chapter  Google Scholar 

  46. R. Piene, Polar classes of singular varieties, Ann. Sci. Éc. Norm. Supér. (4) 11, 247–276 (1978).

    MathSciNet  MATH  Google Scholar 

  47. J. Renegar, A faster PSPACE algorithm for the existential theory of the reals, in Proc. 29th Annual IEEE Symposium on the Foundation of Computer Science (1988), pp. 291–295.

    Google Scholar 

  48. J. Renegar, On the computational complexity and geometry of the first order theory of the reals, J. Symb. Comput. 13, 255–352 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Safey El Din, Finding sampling points on real hypersurfaces is easier in singular situations. Preprint Université Paris VII (2005).

  50. M. Safey El Din, E. Schost, Polar varieties and computation of one point in each connected component of a smooth real algebraic set, in Proc. ISSAC 2003, ed. by J.R. Sendra (ACM, New York, 2003), pp. 224–231.

    Chapter  Google Scholar 

  51. M. Safey El Din, E. Schost, Properness defects and projections and computation of at least one point in each connected component of a real algebraic set, J. Discrete Comput. Geom. 32, 417–430 (2004).

    MathSciNet  MATH  Google Scholar 

  52. E. Schost, Computing parametric geometric resolutions, Appl. Algebra Eng. Commun. Comput. 13, 349–393 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Severi, Sulle intersezioni delle varieta algebriche e sopra i loro caratteri e singolarità proiettive, Torino Mem. (2) 52, 61–118 (1903).

    Google Scholar 

  54. F. Severi, La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie algebrica, Comment. Math. Helv. 4, 268–326 (1932).

    Article  MathSciNet  MATH  Google Scholar 

  55. I.R. Shafarevich, Basic Algebraic Geometry. 1: Varieties in Projective Space (Springer, Berlin, 1994).

    Book  MATH  Google Scholar 

  56. P. Solernó, Effective Lojasiewicz inequalities in semialgebraic geometry, Appl. Algebra Eng. Commun. Comput. 2, 1–14 (1991).

    Article  MATH  Google Scholar 

  57. M. Spivak, Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus, (Benjamins, Amsterdam, 1965).

    MATH  Google Scholar 

  58. B. Teissier, Variétés polaires II., Multiplicités polaires, sections planes, et conditions de Whitney, in Algebraic Geometry, Proc. Int. Conf., La Rabida/Spain 1981. Lect. Notes Math., vol. 961 (1982), pp. 314–491.

    Chapter  Google Scholar 

  59. B. Teissier, Quelques points de l’histoire des variétés polaires, de Poncelet à nos jours, Sémin. Anal., Univ. Blaise Pascal 1987–1988, 4 (1988), 12 pp.

  60. J.A. Todd, The geometrical invariants of algebraic loci, Proc. Lond. Math. Soc. 43, 127–138 (1937).

    Article  Google Scholar 

  61. J.A. Todd, The arithmetical invariants of algebraic loci, Proc. Lond. Math. Soc. 43, 190–225 (1937).

    Article  Google Scholar 

  62. W. Vogel, Lectures on Results on Bézout’s Theorem. Lectures on Mathematics and Physics, vol. 74. Notes by D.P. Patil, published for Tata Institute of Fundamental Research (Springer, Berlin, 1984).

    MATH  Google Scholar 

  63. J. von zur Gathen, Parallel arithmetic computations: a survey. Mathematical foundations of computer science, in Proc. 12th Symp., Bratislava/Czech, 1986. Lect. Notes Comput. Sci., vol. 233 (1986), pp. 93–112.

    Google Scholar 

  64. J. von zur Gathen, Parallel linear algebra, in Synthesis of Parallel Algorithms, ed. by J.H. Reif (Morgan Kaufmann, San Mateo, 1993), pp. 573–617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joos Heintz.

Additional information

Communicated by Teresa Krick.

Dedicated to Tomás Recio on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bank, B., Giusti, M., Heintz, J. et al. Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces. Found Comput Math 12, 75–122 (2012). https://doi.org/10.1007/s10208-011-9112-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-011-9112-6

Keywords

Mathematics Subject Classification (2010)

Navigation