Skip to main content
Log in

Polynomial Hierarchy, Betti Numbers, and a Real Analogue of Toda’s Theorem

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Toda (in SIAM J. Comput. 20(5):865–877, 1991) proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P #P, namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result, which illustrates the power of counting, is considered to be a seminal result in computational complexity theory. An analogous result in the complexity theory over the reals (in the sense of Blum–Shub–Smale real machines in Bull. Am. Math. Soc. (NS) 21(1): 1–46, 1989) has been missing so far. In this paper we formulate and prove a real analogue of Toda’s theorem. Unlike Toda’s proof in the discrete case, which relied on sophisticated combinatorial arguments, our proof is topological in nature. As a consequence of our techniques, we are also able to relate the computational hardness of two extremely well-studied problems in algorithmic semi-algebraic geometry: the problem of deciding sentences in the first-order theory of the reals with a constant number of quantifier alternations, and that of computing Betti numbers of semi-algebraic sets. We obtain a polynomial time reduction of the compact version of the first problem to the second. This latter result may be of independent interest to researchers in algorithmic semi-algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Basu, On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets, Discrete Comput. Geom. 22(1), 1–18 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Basu, Computing the first few Betti numbers of semi-algebraic sets in single exponential time, J. Symb. Comput. 41(1), 1125–1154 (2006). MR 2262087 (2007k:14120).

    Article  MATH  Google Scholar 

  3. S. Basu, Algorithmic semi-algebraic geometry and topology—recent progress and open problems, in Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary Mathematics, vol. 453 (American Mathematical Society, Providence, 2008), pp. 139–212.

    Google Scholar 

  4. S. Basu, R. Pollack, M.-F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM 43(6), 1002–1045 (1996). MR 98c:03077.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Basu, R. Pollack, M.-F. Roy, Computing roadmaps of semi-algebraic sets on a variety, J. Am. Math. Soc. 13(1), 55–82 (2000). MR 1685780 (2000h:14048).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn., Algorithms and Computation in Mathematics, vol. 10 (Springer, Berlin, 2006). MR 1998147 (2004g:14064).

    MATH  Google Scholar 

  7. S. Basu, R. Pollack, M.-F. Roy, Computing the first Betti number of a semi-algebraic set, Found. Comput. Math. 8(1), 97–136 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Bjorner, M.L. Wachs, V. Welker, Poset fiber theorems, Trans. Am. Math. Soc. 357(5), 1877–1899 (2004).

    MathSciNet  Google Scholar 

  9. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998). With a foreword by Richard M. Karp. MR 99a:68070.

    Google Scholar 

  10. L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Am. Math. Soc. (NS) 21(1), 1–46 (1989). MR 90a:68022.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Bochnak, M. Coste, M.-F. Roy, Géométrie Algébrique Réelle (second edition in English: Real Algebraic Geometry), Ergebnisse der Mathematik und ihrer Grenzgebiete (Results in Mathematics and Related Areas), vol. 12(36) (Springer, Berlin, 1987 (1998)). MR 949442 (90b:14030).

  12. P. Bürgisser, F. Cucker, Variations by complexity theorists on three themes of Euler, Bézout, Betti, and Poincaré, in Complexity of Computations and Proofs, Quad. Mat., vol. 13 (Dept. Math., Seconda Univ. Napoli, Caserta, 2004), pp. 73–151. MR 2131406 (2006c:68053).

  13. P. Bürgisser, F. Cucker, Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets, J. Complex. 22(2), 147–191 (2006). MR 2200367 (2007b:68059).

    Article  MATH  Google Scholar 

  14. P. Bürgisser, F. Cucker, M. Lotz, Counting complexity classes for numeric computations. III. Complex projective sets, Found. Comput. Math. 5(4), 351–387 (2005). MR 2189543 (2006h:68039).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Canny, Computing road maps in general semi-algebraic sets, Comput. J. 36, 504–514 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Cluckers, F. Loeser, Constructible motivic functions and motivic integration, Invent. Math. 173(1), 23–121 (2008). MR 2403394 (2009g:14018).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Delfs, M. Knebusch, Locally Semialgebraic Spaces, Lecture Notes in Mathematics, vol. 1173 (Springer, Berlin, 1985). MR 819737 (87h:14019).

    MATH  Google Scholar 

  18. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974). MR 0340258 (49 #5013).

    Article  MathSciNet  Google Scholar 

  19. P. Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52, 137–252 (1980). MR 601520 (83c:14017).

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Dwork, On the rationality of the zeta function of an algebraic variety, Am. J. Math. 82(3), 631–648 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Edmundo, N. Peatfield, o-minimal Čech cohomology, Q. J. Math. 59(2), 213–220 (2008). MR 2428077.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Gabrielov, N. Vorobjov, T. Zell, Betti numbers of semialgebraic and sub-Pfaffian sets, J. Lond. Math. Soc. (2) 69(1), 27–43 (2004). MR 2025325 (2004k:14105).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Gabrielov, N. Vorobjov, Approximation of definable sets by compact families, and upper bounds on homotopy and homology, J. Lond. Math. Soc. (2) 80(1), 35–54 (2009). MR 2520376.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Gournay, J.J. Risler, Construction of roadmaps of semi-algebraic sets, Appl. Algebra Eng. Commun. Comput. 4(4), 239–252 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Grigoriev, Complexity of deciding Tarski algebra, J. Symb. Comput. 5(1–2), 65–108 (1988). MR 90b:03054.

    Article  Google Scholar 

  26. D. Grigoriev, N. Vorobjov, Counting connected components of a semi-algebraic set in subexponential time, Comput. Complex. 2(2), 133–186 (1992).

    Article  Google Scholar 

  27. J. Matoušek, Using the Borsuk–Ulam Theorem. Universitext (Springer, Berlin, 2003). Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler. MR 1988723 (2004i:55001).

    MATH  Google Scholar 

  28. K. Meer, Counting problems over the reals, Theoret. Comput. Sci. 242(1–2), 41–58 (2000). MR 1769145 (2002g:68041).

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Papadimitriou, Computational Complexity (Addison-Wesley, San Diego, 1994).

    MATH  Google Scholar 

  30. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals. I-III, J. Symb. Comput. 13(2), 255–352 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  31. U. Schöning, Probabilistic complexity classes and lowness, J. Comput. Syst. Sci. 39(1), 84–100 (1989) MR 1013721 (91b:68041a).

    Article  MATH  Google Scholar 

  32. M. Shub, S. Smale, On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “\(\mathrm{NP}\not=\mathrm{P}\)?”, Duke Math. J. 81(1), 47–54 (1995). A celebration of John F. Nash, Jr. MR 1381969 (97h:03067).

    Article  MATH  MathSciNet  Google Scholar 

  33. E.H. Spanier, Algebraic Topology (McGraw-Hill Book, New York, 1966). MR 0210112 (35 #1007).

    MATH  Google Scholar 

  34. L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3(1), 1–22 (1977). MR 0438810 (55 #11716).

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd edn. (University of California Press, Berkeley/Los Angeles, 1951). MR 13,423a.

    MATH  Google Scholar 

  36. S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20(5), 865–877 (1991). MR 1115655 (93a:68047).

    Article  MATH  MathSciNet  Google Scholar 

  37. L.G. Valiant, V.V. Vazirani, NP is as easy as detecting unique solutions, Theoret. Comput. Sci. 47(1), 85–93 (1986). MR 871466 (88i:68021).

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Weil, Number of solutions of equations over finite fields, Bull. Am. Math. Soc. 55, 497–508 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  39. D.Yu. Grigoriev, N.N. Vorobjov Jr., Solving systems of polynomial inequalities in subexponential time, J. Symb. Comput. 5(1–2), 37–64 (1988). MR 949112 (89h:13001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugata Basu.

Additional information

Communicated By Peter Bürgisser.

S. Basu was supported in part by an NSF grant CCF-0634907.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Zell, T. Polynomial Hierarchy, Betti Numbers, and a Real Analogue of Toda’s Theorem. Found Comput Math 10, 429–454 (2010). https://doi.org/10.1007/s10208-010-9062-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9062-4

Keywords

Mathematics Subject Classification (2000)

Navigation