Abstract
Composite marginal likelihoods are pseudolikelihoods constructed by compounding marginal densities. In several applications, they are convenient surrogates for the ordinary likelihood when it is too cumbersome or impractical to compute. This paper presents an overview of the topic with emphasis on applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aerts, M., Claeskens, G.: Bootstrapping pseudolikelihood models for clustered binary data. Ann. Inst. Stat. Math. 51, 515–530 (1999)
Allcroft, D.J., Glasbey, C.A.: A spectral estimator of ARMA parameters from thresholded data. Stat. Comput. 12, 369–376 (2002)
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Caski, F. (eds.) Proc. Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)
Andersen, E.W.: Composite likelihood and two-stage estimation in family studies. Biostatistics 5, 15–30 (2004)
Anderson, J.A., Pemberton, J.D.: The grouped continuous model for multivariate ordered categorical variables and covariate adjustment. Biometrics 41, 875–885 (1985)
Apanasovich, T.V., Ruppert, D., Lupton, J.R., Popovic, N., Turner, N.D., Chapkin, R.S., Carroll, R.J.: Aberrant crypt foci and semiparametric modelling of correlated binary data. Biometrics (2008, to appear)
Azzalini, A.: Maximum likelihood of order m for stationary stochastic processes. Biometrika 70, 381–367 (1983)
Bellio, R., Varin, C.: A pairwise likelihood approach to generalized linear models with crossed random effects. Stat. Model. 5, 217–227 (2005)
Besag, J.E.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Stat. Soc. B 34, 192–236 (1974)
Besag, J.E.: Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika 64, 616–618 (1977)
Bevilacqua, M., Gaetan, C., Mateu, J., Porcu, E.: Estimating space-time covariane functions: a composite likelihood approach (2007, submitted)
Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88, 9–25 (1993)
Caragea, P., Smith, R.L.: Approximate likelihoods for spatial processes (2007, submitted)
Caragea, P., Smith, R.L.: Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models. J. Multivar. Stat. Anal. (2008, to appear)
Carey, V., Zeger, S.L., Diggle, P.: Modelling multivariate binary data with alternating logistic regressions. Biometrika 80, 517–526 (1993)
Chandler, R.E., Bate, S.: Inference for clustered data using the independence loglikelihood. Biometrika 94, 167–183 (2007)
Christensen, O., Waagepetersen, R.: Bayesian prediction of spatial count data using generalized linear mixed models. Biometrics 58, 280–286 (2002)
Cox, D.R.: Partial likelihood. Biometrika 62, 269–276 (1975)
Cox, D.R., Reid, N.: A note on pseudolikelihood constructed from marginal densities. Biometrika 91, 729–737 (2004)
Cressie, N.: Statistics for Spatial Data, 2nd edn. Wiley, New York (1993)
Curriero, F.C., Lele, S.: A composite likelihood approach to semivariogram estimation. J. Agric. Biol. Environ. Stat. 4, 9–28 (1999)
Davison, A.C.: Statistical Models. Cambridge University Press, Cambridge (2003)
de Leon, A.R.: Pairwise likelihood approach to grouped continuous model and its extension. Stat. Probab. Lett. 75, 49–57 (2005)
de Leon, A.R., Carriere, K.C.: General mixed-data model: extension of general location and grouped continuous models. Can. J. Stat. 35, 1–16 (2007)
Diggle, P.J.: Binary mosaics and the spatial pattern of heather. Biometrics 37, 531–539 (1981)
Diggle, P.J., Tawn, J.A., Moyeed, R.A.: Model-based geostatistics (with discussion). J. R. Stat. Soc. Ser. B 47, 299–350 (1998)
Drum, M.L., McCullagh, P.: REML estimation with exact covariance in the logistic mixed model. Biometrics 49, 677–689 (1993)
Engler, D.A., Mohapatra, M., Louis, D.N., Betensky, R.A.: A pseudolikelihood approach for simultaneous analysis of array comparative genomic hybridizations. Biostatistics 7, 399–421 (2006)
Fearnhead, P.: Consistency of estimators of the population-scaled recombination rate. Theor. Popul. Biol. 64, 65–79 (2003)
Fearnhead, P., Donnely, P.: Approximate likelihood methods for estimating local recombination rates (with discussion). J. R. Stat. Soc. B 64, 657–680 (2002)
Fieuws, S., Verbeke, G.: Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics 62, 424–431 (2006)
Fieuws, S., Verbeke, G., Boen, F., Delecluse, C.: High dimensional multivariate mixed models for binary questionnaire data. Appl. Stat. 55, 449–460 (2006)
Fieuws, S., Verbeke, G., Molenberghs, G.: Random-effects models for multivariate repeated measures. Stat. Methods Med. Res. 16, 387–397 (2007)
Gao, X., Song, P.X.-K., Pu, D.Q.: Composite likelihood inference for gene networks on time-course microarray data (2007, submitted)
Geys, H., Molenberghs, G., Ryan, L.M.: Pseudolikelihood modelling of multivariate outcomes in developmental toxicology. J. Am. Stat. Assoc. 94, 734–745 (1999)
Geys, H., Regan, M.M., Catalano, P.J., Molenberghs, G.: Two latent variable risk assessment approaches for mixed continuous and discrete outcomes from developmental toxicity data. J. Agric. Biol. Environ. Stat. 6, 340–355 (2001)
Glasbey, C.A.: Non-linear autoregressive time series with multivariate Gaussian mixtures as marginal distributions. Appl. Stat. 50, 143–154 (2001)
Godambe, V.P.: An optimum property of regular maximum likelihood equation. Ann. Math. Stat. 31, 1208–1211 (1960)
Guan, Y.: A composite likelihood approach in fitting spatial point process models. J. Am. Stat. Assoc. 101, 1502–1512 (2006)
Guan, Y.: A composite likelihood cross-validation approach in selecting bandwidth for the estimation of the pair correlation function. Scand. J. Stat. 34, 336–346 (2007)
Hall, P., Jing, B.: On sample reuse methods for dependent data. J. R. Stat. Soc. Ser. B 58, 727–737 (1996)
Hanfelt, J.J.: Composite conditional likelihood for sparse clustered data. J. R. Stat. Soc. Ser. B 66, 259–273 (2004)
Haslett, J., Raftery, A.E.: Space-time modelling with long-memory dependence: assessing Ireland wind power resource. Appl. Stat. 38, 1–50 (1989)
Heagerty, P.J., Lele, S.R.: A composite likelihood approach to binary spatial data. J. Am. Stat. Assoc. 93, 1099–1111 (1998)
Heagerty, P.J., Lumley, T.: Window subsampling of estimating functions with application to regression models. J. Am. Stat. Assoc. 95, 197–211 (2000)
Heyde, C.C.: Quasi-Likelihood and its Application. Springer, New York (1997)
Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data. Biometrika 90, 355–366 (2003)
Hjort, N.L., Mohn, E.: Topics in the statistical analysis of remotely sensed data (with discussion). Bull. Int. Stat. Inst. 52, 23–44 (1987) (Proceedings of the ISI Meeting, Tokyo)
Hjort, N.L., Omre, H.: Topics in spatial statistics (with discussion). Scand. J. Stat. 21, 289–357 (1994)
Hjort, N.L., Varin, C.: ML, PL and QL for Markov chain models. Scand. J. Stat. 35, 64–82 (2008)
Hougaard, P.: A class of multivariate failure time distributions. Biometrika 73, 671–678 (1986)
Hudson, R.R.: Two-locus sampling distributions and their application. Genetics 159, 1805–1817 (2001)
Jöreskog, K.G., Moustaki, I.: Factor analysis of ordinal variables: a comparison of three approaches. Multivar. Behav. Res. 36, 347–386 (2001)
Kent, J.T.: Robust properties of likelihood ratio tests. Biometrika 69, 19–27 (1982)
Kuk, A.Y.C.: Permutation invariance of alternating logistic regression for multivariate binary data. Biometrika 91, 758–761 (2004)
Kuk, A.Y.C.: A hybrid pairwise likelihood method. Biometrika 94, 939–952 (2007)
Kuk, A.Y.C., Nott, D.J.: A pairwise likelihood approach to analyzing correlated binary data. Stat. Probab. Lett. 47, 329–335 (2000)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)
Le Cessie, S., Van Houwelingen, J.C.: Logistic regression for correlated binary data. Appl. Stat. 43, 95–108 (1994)
Lele, S.R.: Sampling variability and estimates of density dependence: a composite-likelihood approach. Ecology 87, 189–202 (2006)
Lele, S.R., Taper, M.L.: A composite likelihood approach to (co)variance components estimation. J. Stat. Plan. Inference 103, 117–135 (2002)
Liang, K.-Y., Qin, J.: Regression analysis under non-standard situations: a pairwise pseudolikelihood approach. J. R. Stat. Soc. B 62, 773–786 (2000)
Liang, G., Yu, B.: Maximum pseudolikelihood estimation in network tomography. IEEE Trans. Signal Process. 51, 2043–2053 (2003)
Liang, K.-Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986)
Lindsay, B.G.: Composite likelihood methods. Contemp. Math. 80, 221–240 (1988)
Mardia, K.V., Hughes, G., Taylor, C.C.: Efficiency of the pseudolikelihood for multivariate normal and von Mises distributions (2007, submitted)
Mateu, J., Porcu, E., Christakos, G., Bevilacqua, M.: Fitting negative spatial covariances to geothermal field temperatures in Nea Kessani (Greece). Environmetrics 18, 759–773 (2007)
McCullagh, P., Nelder, J.A.: Generalised Linear Models, 2nd edn. Chapman and Hall, London (1989)
McVean, G., Awadalla, P., Fearnhead, P.: A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002)
Molenberghs, G., Geys, H.: Multivariate clustered data analysis in developmental toxicity studies. Stat. Neerl. 55, 319–345 (2001)
Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer, New York (2005)
Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, Berlin (2006)
Nott, D.J., Rydén, T.: Pairwise likelihood methods for inference in image models. Biometrika 86, 661–676 (1999)
Oakes, D., Ritz, J.: Regression in a bivariate copula model. Biometrika 87, 345–352 (2000)
Oman, S.D., Landsman, V., Carmel, Y., Kadmon, R.: Analyzing spatially distributed binary data using independent-block estimating equations. Biometrics 63, 892–900 (2007)
Parner, E.T.: A composite likelihood approach to multivariate survival data. Scand. J. Stat. 28, 295–302 (2001)
Parzen, M., Lipsitz, S.R., Fitzmaurice, G.M., Ibrahim, J.G., Troxel, A.: Pseudolikelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Stat. Med. 25, 2784–2796 (2006)
Parzen, M., Lipsitz, S.R., Fitzmaurice, G.M., Ibrahim, J.G., Troxel, A., Molenberghs, G.: Pseudo-likelihood methods for the analysis of longitudinal binary data subject to nonignorable non-monotone missingness. J. Data Sci. 5, 1–21 (2007)
Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000)
Plackett, R.L.: A class of bivariate distributions. J. Am. Stat. Assoc. 60, 516–522 (1965)
Poon, W.-Y., Lee, S.-Y.: Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika 52, 409–430 (1987) (correction in 53, p. 301)
Porcu, E., Mateu, J., Bevilacqua, M.: Covariance functions which are stationary or nonstazionary in space and stazionary in time. Stat. Neerl. 61, 358–382 (2007)
Renard, D., Geys, H., Molenberghs, G., Burzykowski, T., Buyse, M.: Validation of surrogate endpoints in multiple randomized clinical trials with discrete outcomes. Biom. J. 44, 921–935 (2002)
Renard, D., Molenberghs, G., Geys, H.: A pairwise likelihood approach to estimation in multilevel probit models. Comput. Stat. Data Anal. 44, 649–667 (2004)
Rodriguez, G., Goldman, N.: An assessment of estimation procedures for multilevel models with binary responses. J. R. Stat. Soc. Ser. A 158, 79–89 (1995)
Rýden, T.: Consistent and asymptotically normal parameter estimates for hidden Markov models. Ann. Stat. 22, 1841–1895 (1994)
Satterthwaites, F.E.: An approximate distribution of estimates of variance components. Biometrics 2, 110–114 (1946)
Song, P.X.-K.: Correlated Data Analysis: Modeling, Analytics and Applications. Springer, New York (2007)
Stein, M.L.: Approximating likelihoods for large spatial data sets. J. R. Stat. Soc. B 66, 275–296 (2004)
Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications, 2nd edn. Wiley, Chichester (1995)
Takeuchi, K.: Distribution of information statistics and criteria for adequacy of models. Math. Sci. 153, 12–18 (1976) (in Japanese)
Tibaldi, F., Molenberghs, G., Burzykowski, T., Geys, H.: Pseudolikelihood estimation for a marginal multivariate survival model. Stat. Med. 23, 947–963 (2004a)
Tibaldi, F., Barbosa, F.T., Molenberghs, G.: Modelling associations between time-to-event responses in pilot cancer clinical trials using a Plackett–Dale model. Stat. Med. 23, 2173–2186 (2004b)
Troxel, A.B., Lipsitz, S.R., Harrington, D.P.: Marginal models for the analysis of longitudinal measurements with noningnorable non-monotone missing data. Biometrika 85, 661–672 (1998)
Vandekerkhove, P.: Consistent and asymptotically normal parameter estimates for hidden Markov mixtures of Markov models. Bernoulli 11, 103–129 (2005)
Vardi, Y.: Network tomography: estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91, 365–377 (1996)
Varin, C., Czado, C.: Modeling pain severity diaries with mixed autoregressive ordinal probit models (2008, submitted)
Varin, C., Vidoni, P.: A note on composite likelihood inference and model selection. Biometrika 92, 519–528 (2005)
Varin, C., Vidoni, P.: Pairwise likelihood inference for ordinal categorical time series. Comput. Stat. Data Anal. 51, 2365–2373 (2006)
Varin, C., Vidoni, P.: Pairwise likelihood inference for general state space models. Econ. Rev. (2008, to appear)
Varin, C., Høst, G., Skare, Ø.: Pairwise likelihood inference in spatial generalized linear mixed models. Comput. Stat. Data Anal. 49, 1173–1191 (2005)
Warnes, J.J., Ripley, B.D.: Problems with likelihood estimation of covariance functions of spatial Gaussian processes. Biometrika 74, 640–642 (1987)
Wedderburn, R.W.M.: Quasi-likelihood functions, generalized linear models and the Gauss-Newton method. Biometrika 61, 439–447 (1974)
West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models, 2nd edn. Springer, New York (1997)
Wilson, R.J., Nott, D.J.: Review of recent results on excursions set models. Image Anal. Stereol. 20, 71–78 (2001)
Zhang, H.: On estimation and prediction for spatial generalized linear mixed models. Biometrics 58, 129–136 (2002)
Zhao, L.P., Prentice, R.L.: Correlated binary regression using a quadratic exponential model. Biometrika 77, 642–648 (1990)
Zhao, Y., Joe, H.: Composite likelihood estimation in multivariate data analysis. Can. J. Stat. 33, 335–356 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Varin, C. On composite marginal likelihoods. AStA 92, 1–28 (2008). https://doi.org/10.1007/s10182-008-0060-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10182-008-0060-7