Skip to main content
Log in

Acoustic cues to caller identity in lemurs: a case study

Journal of Ethology Aims and scope Submit manuscript

Abstract

This study investigated the acoustic structure of grunt vocalizations in red-bellied lemurs (Eulemur rubriventer) and its potential for individual discrimination. Acoustic analyses were performed on 1,605 grunts recorded from seven lemurs belonging to two captive groups. From the perspective of sound-filter theory, we described the acoustic structure of grunts, measuring two sets of parameters: fundamental frequency characteristics as larynx-related variables and four formant frequencies as filter-related features. Formants were effective in assigning 80.5% of the vocalizations to the correct emitter against 24.9% scored by the model based on larynx-related variables. We concluded that vocal tract resonances might potentially provide conspecifics with individual cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Altmann J (1974) Observational study of behavior. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Andrew RJ (1976) Use of formants in the grunts of baboons and other nonhuman primates. Ann N Y Acad Sci 280:673–693

    Article  PubMed  CAS  Google Scholar 

  • Ceugniet M, Izumi A (2004) Vocal individual discrimination in Japanese monkeys. Primates 45:119–128

    Article  PubMed  Google Scholar 

  • Charlton BD, Zhihe Z, Snyder RJ (2009) Vocal cues to identity and relatedness in giant pandas (Ailuropoda melanoleuca). J Acoust Soc Am 126:2721–2732

    Article  PubMed  Google Scholar 

  • Dallmann R, Geissmann T (2009) Individual and geographical variability in the songs of wild silvery gibbons (Hylobates moloch) on Java, Indonesia. In: Lappan SM, Whittacker D (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, New York, pp 91–110

    Google Scholar 

  • Fitch WT (1997) Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J Acoust Soc Am 102:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Fitch WT (2000) The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica 57:205–218

    Article  PubMed  CAS  Google Scholar 

  • Fitch WT, Hauser MD (1995) Vocal production in nonhuman primates: acoustics, physiology, and functional constraints on ‘honest’ advertisement. Am J Primatol 37:179–190

    Article  Google Scholar 

  • Frommolt KH, Goltsman ME, Macdonald DW (2003) Barking foxes, Alopex lagopus: field experiments in individual recognition in a territorial mammal. Anim Behav 65:509–518

    Article  Google Scholar 

  • Gamba M, Giacoma C (2005) Key issues in the study of primate acoustic signals. J Anthropol Sci 83:61–87

    Google Scholar 

  • Gamba M, Giacoma C (2006) Vocal tract modeling in a prosimian primate: the black and white ruffed lemur. Acta Acust 92:749–755

    Google Scholar 

  • Gamba M, Giacoma C (2007) Quantitative acoustic analysis of the vocal repertoire of the crowned lemur. Ethol Ecol Evol 19:323–343

    Article  Google Scholar 

  • Gamba M, Giacoma C (2008) Subspecific divergence in the black lemur’s low-pitched vocalizations. Open Acoust J 1:49–53

    Article  Google Scholar 

  • Ghanzanfar AA, Rendall D (2008) The evolution of human vocal production. Curr Biol 18:457–460

    Article  Google Scholar 

  • Giacoma C, Sorrentino V, Gamba M (2010) Sex differences in the song of Indri indri. Int J Primatol 31:539–551

    Article  Google Scholar 

  • Gosset D, Fornasieri I, Roeder JJ (2003) Acoustic structure and contexts of emission of vocal signals by black lemurs. Evol Commun 4:225–251

    Article  Google Scholar 

  • Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–11

    Article  Google Scholar 

  • Lieberman P, Blumstein SE (1988) Speech physiology, speech perception, and acoustic phonetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Macedonia JM, Stanger KF (1994) Phylogeny of the lemuridae revisited: evidence from communication signals. Folia Primatol 63:1–43

    Article  PubMed  CAS  Google Scholar 

  • Maretti G, Sorrentino V, Finomana A, Gamba M, Giacoma C (2010) Not just a pretty song: an overview of the vocal repertoire of Indri indri. J Anthropol Sci 88:151–165

    PubMed  Google Scholar 

  • Mathevon N, Charrier I, Jouventin P (2003) Potential of individual recognition in acoustic signals: a comparative study of two gulls with different nesting patterns. Cr Acad Sci III-Vie 326:329–337

    Google Scholar 

  • Mitani JC, Gros-Louis J, Macedonia J (1996) Selection for acoustic individuality within the vocal repertoire of wild chimpanzees. Int J Primatol 17:569–583

    Article  Google Scholar 

  • Oda R (2002) Individual distinctiveness of the contact calls of ring-tailed lemur. Folia Primatol 72:132–136

    Article  Google Scholar 

  • Owren MJ, Linker CD (1995) Some analysis methods that may be useful to acoustic primatologists. In: Zimmermann E, Newman JD, Jurgens U (eds) Current topics in primate vocal communication. Plenum, New York, pp 1–27

    Google Scholar 

  • Reby D, McComb K (2003) Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Anim Behav 65:519–530

    Article  Google Scholar 

  • Rendall D, Rodman PS, Emond RE (1996) Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Anim Behav 51:1007–1015

    Article  Google Scholar 

  • Rendall D, Kollias S, Ney C, Lloyd P (2005) Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: the role of vocalizer body size and voice-acoustic allometry. J Acoust Soc Am 117:944–955

    Article  PubMed  Google Scholar 

  • Richman B (1976) Some vocal distinctive features used by gelada monkeys. J Acoust Soc Am 60:718–724

    Article  PubMed  CAS  Google Scholar 

  • Riede T, Titze IR (2008) Vocal fold elasticity of the Rocky Mountain elk (Cervus elaphus nelsoni)—producing high fundamental frequency vocalization with a very long vocal fold. J Exp Biol 211:2144–2154

    Article  PubMed  Google Scholar 

  • Rukstalis M, Fite JE, French JA (2003) Social change affects vocal structure in a callitrichid primate (Callithrix kuhlii). Ethology 109:327–340

    Article  Google Scholar 

  • Sayigh LS, Tyack PL, Wells RS, Solow AR, Scott MD, Irvine AB (1998) Individual recognition in wild bottlenose dolphins: a field test using playback experiments. Anim Behav 57:41–50

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL (1984) The acoustic features of vervet monkey grunts. J Acoust Soc Am 75:1623–1628

    Article  PubMed  CAS  Google Scholar 

  • Slocombe KE, Kaller T, Call J, Zuberbuhler K (2010) Chimpanzees extract social information from agonistic screams. PLoS One 5:e11473. doi:10.1371/journal.pone.0011473

    Article  PubMed  Google Scholar 

  • Smuts B, Cheney D, Seyfarth R, Wrangham R, Struhsaker T (1987) Primate societies. University of Chicago Press, Chicago

    Google Scholar 

  • Sokal R, Rohlf FJ (1995) Biometry. WH Freeman, New York

    Google Scholar 

  • Taylor AM, Reby D (2010) Contribution of the source-filter theory to the study of mammal vocal communication. J Zool 280:221–236

    Article  Google Scholar 

  • Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Vannoni E, McElligott AG (2007) Individual acoustic variation in fallow deer (Dama dama) common and harsh groans: a source-filter theory perspective. Ethology 113:223–234

    Article  Google Scholar 

  • Waser PM (1977) Individual recognition, intragroup cohesion and intergroup spacing: evidence from sound playback to forest monkeys. Behaviour 60:28–74

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Bonelli for help in data collection, and P. Moisson, D. Gomis, and the Staff at Mulhouse Zoo for granting us access to their lemur groups. This research was supported by the Università degli Studi di Torino and the Ministero dell’Istruzione, dell’Università e della Ricerca. We also thank Dr. Cesare Avesani Zaborra and Parco Natura Viva-Centro Tutela Specie Minacciate for continued support. The authors would also like to express their appreciation to three anonymous reviewers for their constructive comments and suggestions on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gamba.

About this article

Cite this article

Gamba, M., Colombo, C. & Giacoma, C. Acoustic cues to caller identity in lemurs: a case study. J Ethol 30, 191–196 (2012). https://doi.org/10.1007/s10164-011-0291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10164-011-0291-z

Keywords

Navigation