Skip to main content

Advertisement

Log in

Recycling glass-polishing sludge and aluminum anodising sludge in polyurethane and cement composites: fire performance and mechanical properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This article aims to study the mechanical strength and fire resistance of polyurethane/cement (PuCem) composites containing glass sludge and sludge from aluminum anodizing. Scanning electron microscopy (SEM) results showed that the replacement of 24.5% of the cement with sand (San), aluminum anodizing (Aas), or glass-polishing sludge (Gla) maintained the alveolar structure in the composites. Also, energy-dispersive X-ray spectroscopy and FTIR analyses showed that the cement hydration reaction forms hydrated aluminates and silicates. ANOVA–Tukey tests showed that the PuCemAas composites’ areas are significantly different from those of PuCemGla and PuCemSan, which are similar to each other. The compressive strength decreases upon replacing cement with the aggregates. The TGA thermograms were similar for the four composites and the polyurethane matrix. The specimens were declassified in the vertical and horizontal position (UL-94). Thus, the composites were an alternative for reducing the use of raw materials from non-renewable sources.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Keshavarz Z, Mostofinejad D (2019) Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Constr Build Mater 195:218–230. https://doi.org/10.1016/j.conbuildmat.2018.11.033

    Article  Google Scholar 

  2. Huysmana S, Schaepmeestera J, Ragaertb K, Dewulfa J, Meestera S (2017) Performance indicators for a circular economy: a case study on post-industrial plastic waste. Resour Conserv Recy 120:46-54. https://doi.org/10.1016/j.resconrec.2017.01.013

  3. Demirel B (2013) Optimization of the composite brick composed of expanded polystyrene and pumice blocks. Constr Build Mater 40:306–313. https://doi.org/10.1016/j.conbuildmat.2012.11.008

    Article  Google Scholar 

  4. Salesa A, Perez-Benedicto JA, Colorado-Aranguren D, Lopez-Julian PL, Esteban LM, Sanz-Baldúz LJ, Saez-Hostaled JL, Ramis J, Olivares D (2017) Physico-mechanical properties of multi-recycled concrete from precast concrete industry. J Clean Prod 141:248–255. https://doi.org/10.1016/j.jclepro.2016.09.058

    Article  Google Scholar 

  5. Pivnenko K, Eriksen MK, Martín-Fernández JA, Eriksson E, Astrup TF (2016) Recycling of plastic waste: presence of phthalates in plastics from households and industry. Waste Manag 54:44–52. https://doi.org/10.1016/j.wasman.2016.05.014

    Article  Google Scholar 

  6. Marques DV, Barcelos RL, Parma GOC, Girotto E, JrA C, Pereira NC, Magnago RF (2019) Recycled polyethylene terephthalate and aluminium anodizing sludge-based boards with flame resistance. Waste Manag 92:1–14. https://doi.org/10.1016/j.wasman.2019.05.013

    Article  Google Scholar 

  7. Marques DV, Barcelos RL, Silva HRT, Egert P, Parma GOC, Girotto E, Consoni D, Benavides R, Silva L, Magnago RF (2018) Recycled polyethylene terephthalate-based boards for thermal-acoustic insulation. J Clean Prod 189:251–252. https://doi.org/10.1016/j.jclepro.2018.04.069

    Article  Google Scholar 

  8. Magnago RF, Muller ND, Martins M, Silva HRT, Egert P, Silva L (2017) Investigating the influence of conduit residues on polyurethane plates. Polimeros 27:23–37. https://doi.org/10.1590/0104-1428.05616

    Article  Google Scholar 

  9. Barcelos RL, Cubas ALV, Dutra ARA, Silva L, Leripio AA, Magnago RF (2016) Preparation of polyurethane sheets using surfboard manufacturing waste and evaluation of their properties to use in Brazil's construction industry. J Biol Chem Res 3:103–120. http://www.ss-pub.org/wp-ontent/uploads/2016/05/BCR2016011301.pdf. Accessed 25 Aug 2017

  10. Palomar I, Barluenga G, Puentes J (2015) Lime–cement mortars for coating with improved thermal and acoustic performance. Constr Build Mater 75:306–314. https://doi.org/10.1016/j.conbuildmat.2014.11.012

    Article  Google Scholar 

  11. Degrave-Lemeurs M, Glé PA, Menibus H (2018) Acoustical properties of hemp concretes for buildings thermal insulation: application to clay and lime binders. Constr Build Mater 160:462–474. https://doi.org/10.1016/j.conbuildmat.2017.11.064

    Article  Google Scholar 

  12. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH (2018) The use of polyurethane for structural and infrastructural engineering applications: a state-of the-art review. Constr Build Mater 190:995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

    Article  Google Scholar 

  13. Heikal M, Ismail MN, Ibrahim NS (2015) Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr Build Mater 91:232–242. https://doi.org/10.1016/j.conbuildmat.2015.05.036

    Article  Google Scholar 

  14. Alvarenga C, Heiderick O, Couto T, Cetlin P, Sales R, Aguilar MTP (2019) Influence of soda-lime waste glass microparticles on workability and thermal properties of portland cement compounds. Mater Constr 69(335):1–9. https://doi.org/10.3989/mc.2019.05818

    Article  Google Scholar 

  15. Huang B, Zhao J, Chai J, Xue B, Zhao F, Wang X (2017) Environmental influence assessment of China’s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. Sol Energy 143:132–141. https://doi.org/10.1016/j.solener.2016.12.038

    Article  Google Scholar 

  16. Lombard B, Maurel A, Marigo J (2017) Numerical modelling of the acoustic wave propagation across an homogenized rigid microstructure in the time domain. J Comput Phys 335:558–577. https://doi.org/10.1016/j.jcp.2017.01.036

    Article  MathSciNet  MATH  Google Scholar 

  17. Quan L, Sounas D, Alu A (2017) Non-reciprocal sound propagation in zero-index metamaterials. J Acoust Soc Am 141:3698. https://doi.org/10.1121/1.4988062

    Article  Google Scholar 

  18. Kinnane O, Reilly A, Grimes J, Pavia S, Walker R (2016) Acoustic absorption of 714 hemp-lime construction. Constr Build Mater 122:674–682. https://doi.org/10.1016/j.conbuildmat.2016.06.106

    Article  Google Scholar 

  19. Zhu H, Xu S (2019) Synthesis and properties of rigid polyurethane foams synthesized from modified urea-formaldehyde resin. Constr Build Mater 202:718–726. https://doi.org/10.1016/j.conbuildmat.2019.01.035

    Article  Google Scholar 

  20. Chu L, Fwa TF (2019) Functional sustainability of single- and double-layer porous asphalt pavements. Constr Build Mater 197:436–443. https://doi.org/10.1016/j.conbuildmat.2018.11.162

    Article  Google Scholar 

  21. Liu G, Florea MVA, Brouwers HJH (2019) Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Constr Build Mater 202:574–588. https://doi.org/10.1016/j.conbuildmat.2018.12.110

    Article  Google Scholar 

  22. Hossain MU, Poon CS (2018) Global warming potential and energy consumption of temporary works in building construction: a case study in Hong Kong. Build Environ 142:171–179. https://doi.org/10.1016/j.buildenv.2018.06.026

    Article  Google Scholar 

  23. Garrido M, Correia JR, Keller T (2016) Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Constr Build Mater 18:235–244. https://doi.org/10.1016/j.conbuildmat.2016.05.074

    Article  Google Scholar 

  24. Shams A, Stark A, Hoogen F, Hegger J (2015) Schneider H Innovative sandwich structures made of high performance concrete and foamed polyurethane. Compos Struct 121:271–279. https://doi.org/10.1016/j.compstruct.2014.11.026

    Article  Google Scholar 

  25. Vladimirov VS, Lukin ES, Popoya NA, Ilyukhin A, Moizis SE, Artamonov MA (2011) New types of lightweight refractory and heat-insulation materials for long term use at extremely high temperatures. Glass Ceram 68:116–122. https://doi.org/10.1007/s10717-011-9335-7

    Article  Google Scholar 

  26. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2007) Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers. Cell Polym 26:245–259. https://doi.org/10.1177/026248930702600402

    Article  Google Scholar 

  27. Malaiškienė J, Vaičienė M, Žurauskienė R (2011) Effectiveness of technogenic waste usage in products of building ceramics and expanded clay concrete. Constr Build Mater 25:3869–3877. https://doi.org/10.1016/j.conbuildmat.2011.04.008

    Article  Google Scholar 

  28. Francisco JAA (2019) Geologia e caracterização do minério de areia da extratora união, pontal do paranapanema-SP. Thesis. Universidade Federal de Santa Catarina

  29. Itambé, relatórios de ensaios. https://cimentoitambe.com.br/relatorios-de-ensaio/?pro=371&chave=2019-13. Accessed 14 Sept 2020

  30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: uma plataforma de código aberto para análise de imagens biológicas. Nat Methods 9(7):676–682

    Article  Google Scholar 

  31. Sanches CH, Fontoura PJ, Vieira PF, Batista MA (2005) Técnicas de suavização de imagens e Eliminação de ruídos. Frederico Westphalen, http://eati.info/eati/2015/assets/anais/Longos/L2.pdf. Accessed 28 Aug 2018

  32. Centro Estadual de Pesquisas em sensoriamento Remoto e Meteorologia (CEPSM). Página dinâmica para o aprendizado de Sensoriamento Remoto: técnicas de manipulação de imagens. http://www.ufrgs.br/engcart/PDASR/maniphist.html. Accessed 28 Aug 2017.

  33. Instituto Nacional de Pesquisas Espaciais, Divisão de Processamento de Imagens (INPE). Spring: tutorial de geoprocessamento. Filtragem. http://www.dpi.inpe.br/spring/teoria/filtrage/filtragem.htm. Accessed 28 Aug 2017.

  34. Larson R, Farber E (2010) Estatística aplicada, 4th edn. Pearson Prentice Hall, São Paulo

    Google Scholar 

  35. Facon J (1996) Morfologia Matemática: teoria e exemplos. Editora Universitária 690 Champagnat PUC, Curitiba.

  36. American Society for Testing and Materials-ASTM (2010) ASTM D1621-16: Standard test method for compressive properties of rigid cellular plastics, ASTM

  37. Underwriters Laboratories-UL 94 (2017) Test for Flammability of plastic materials for parts in devices and appliances

  38. American Society for Testing and Materials-ASTM (2014) ASTM D635-14: Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position. ASTM

  39. American Society for Testing and Materials-ASTM (2010) ASTM D3801-10: Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position. ASTM

  40. Wang Y, Wang F, Dong Q, Xie M, Liu P, Ding Y, Zhang S, Yang M, Zheng G (2017) Core-shell expandable graphite @ aluminium hydroxide as a flame-retardant for rigid polyurethane foams. Polym Degrad Stabil 146:267–276. https://doi.org/10.1016/j.polymdegradstab.2017.10.017

    Article  Google Scholar 

  41. Tabelin CB, Veerawattananun S, Ito M, Hiroyoshi N, Igarashi T (2017) Pyrite oxidation in the presence of haematite and alumina: I. Batch leaching experiments and kinetic modelling calculations. Sci Total Environ 580:687–698. https://doi.org/10.1016/j.scitotenv.2016.12.015

    Article  Google Scholar 

  42. Costa TMH, Gallas MR, Benvenutti EV, Jornada JAH (1999) Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. J Phys Chem B 103:4278–4284. https://doi.org/10.1021/jp983791o

  43. Ram S (2001) Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH)αH2O bulk crystals. Infrared Phys Technol 42:547–560. https://doi.org/10.1016/S1350-4495(01)00117-7

    Article  Google Scholar 

  44. Zhang XL, Duan HJ, Yan DX, Kang LQ, Zhang WQ, Tang JH, Li ZM (2015) A facile strategy to fabricate microencapsulated expandable graphite as a flame retardant for rigid polyurethane foams. J Appl Polym Sci 132:42364. https://doi.org/10.1002/app.42364

    Article  Google Scholar 

  45. Vaičiukynienė D, Skipkiūnas G, Sasnauskas V, Daukšys M (2012) Cement compositions with modified hydrosodalite. Chemija 23:147–154. http://mokslozurnalai.lmaleidykla.lt/publ/0235-7216/2012/3/147-154.pdf. Accessed 30 Aug 2018.

  46. Kunther W, Ferreiro S, Skibsted J (2017) Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. J Mater Chem A 5:17401–17412. https://doi.org/10.1039/c7ta06104h

    Article  Google Scholar 

  47. Brazilian Association of Technical Standards-ABNT (2016) ABNT NBR 8082: Rigid polyurethane foam for heat insulation purposes: Determination of compressive strength. ABNT

  48. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R 63:100–125. https://doi.org/10.1016/j.mser.2008.09.002

    Article  Google Scholar 

  49. Yang R, Hu W, Xu L, Song Y, Li J (2015) Synthesis, mechanical properties and fire behaviours of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym Degrad Stabil 122:102–109. https://doi.org/10.1016/j.polymdegradstab.2015.10.007

    Article  Google Scholar 

  50. Laoutid F, Lorgouilloux M, Lesueur D, Bonnaud L, Dubois P (2013) Calcium-based hydrated minerals: promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polym Degrad Stabil 98:1617–1625. https://doi.org/10.1016/j.polymdegradstab.2013.06.020

    Article  Google Scholar 

  51. Singh H, Jain AK (2008) Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. Appl Polym Sc 111:1115–1143. https://doi.org/10.1002/app.29131

    Article  Google Scholar 

Download references

Acknowledgements

We thank HUBER Raw Material (SP, Brazil), Personal Glass (SC, Brazil), and Hydro (SC, Brazil) for the donation of ATH, glass-polishing sludge, and aluminum anodizing sludge, respectively. This work was supported by the Foundation of Amparo for Research and Innovation of the State of Santa Catarina [No 09/2015, Research Group on Science, Technology, and Innovation in Materials and No. 06/2017, Research Group on Active Materials], Coordination for the Improvement of Higher Education Personnel. We also thank LEC-UNISUL and Hugo Gallardo, Ph.D., Professor of the Federal University of Santa Catarina (UFSC), for supporting this research. The electron microscopy work was performed with the JEOL JSM-6390LV microscope of the LCME-UFSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Faverzani Magnago.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. 1S. FTIR spectra of PuCem, PuCemAas, PuCemSan and PuCemGla (DOCX 245 KB)

10163_2021_1202_MOESM2_ESM.docx

Fig. 2S. Tukey tests for the differences of the means for the areas and circularities of classes 2 and 3 of PuCemSan, PuCemGla, PuCemAas and PuCem (DOCX 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnago, R.F., de Alcântara Braglia, T., de Aguiar, A.C. et al. Recycling glass-polishing sludge and aluminum anodising sludge in polyurethane and cement composites: fire performance and mechanical properties. J Mater Cycles Waste Manag 23, 1126–1140 (2021). https://doi.org/10.1007/s10163-021-01202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01202-x

Keywords

Navigation