Skip to main content
Log in

Sensitivity to Pulse Rate and Amplitude Modulation in an Animal Model of the Auditory Brainstem Implant (ABI)

  • Original Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing by electrically stimulating the cochlear nucleus (CN) of the brainstem. Our previous study (McInturff et al., 2022) showed that single-pulse stimulation of the dorsal (D)CN subdivision with low levels of current evokes responses that have early latencies, different than the late response patterns observed from stimulation of the ventral (V)CN. How these differing responses encode more complex stimuli, such as pulse trains and amplitude modulated (AM) pulses, has not been explored. Here, we compare responses to pulse train stimulation of the DCN and VCN, and show that VCN responses, measured in the inferior colliculus (IC), have less adaption, higher synchrony, and higher cross-correlation. However, with high-level DCN stimulation, responses become like those to VCN stimulation, supporting our earlier hypothesis that current spreads from electrodes on the DCN to excite neurons located in the VCN. To AM pulses, stimulation of the VCN elicits responses with larger vector strengths and gain values especially in the high-CF portion of the IC. Additional analysis using neural measures of modulation thresholds indicate that these measures are lowest for VCN. Human ABI users with low modulation thresholds, who score best on comprehension tests, may thus have electrode arrays that stimulate the VCN. Overall, the results show that the VCN has superior response characteristics and suggest that it should be the preferred target for ABI electrode arrays in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

All data and materials used in this study will be available upon request to Stephen McInturff.

Code Availability

The MATLAB code used for data analysis will be available upon request to Stephen McInturff.

References

  1. Colletti V, Shannon RV (2005) Open set speech perception with auditory brainstem implant? Laryngoscope 115(11):1974–1978. https://doi.org/10.1097/01.mlg.0000178327.42926.ec

    Article  PubMed  Google Scholar 

  2. Dhanasingh A, Hochmair I (2021) ABI-auditory brainstem implant. Acta Otolaryngol 141(S1):63–81. https://doi.org/10.1080/00016489.2021.1888486

    Article  PubMed  Google Scholar 

  3. Ramsden RT, Freeman SRM, Lloyd SKW, King AT, Shi X, Ward CL, Huson SM, Mawman DJ, O’Driscoll MP, Evans DG, Rutherford SA (2016) Auditory brainstem implantation in neurofibromatosis type 2: experience from the manchester programme. Otol Neurotol 37(9):1267–1274. https://doi.org/10.1097/MAO.0000000000001166

    Article  PubMed  Google Scholar 

  4. Vincent C (2012) Auditory brainstem implants: how do they work? Anat Rec (Hoboken) 295(11):1981–1986. https://doi.org/10.1002/ar.22588

    Article  CAS  PubMed  Google Scholar 

  5. Wong K, Kozin ED, Kanumuri VV, Vachicouras N, Miller J, Lacour S, Brown MC, Lee DJ (2019) Auditory brainstem implants: recent progress and future perspectives. Front Neurosci 13(January):1–8. https://doi.org/10.3389/fnins.2019.00010

    Article  Google Scholar 

  6. Barber SR, Kozin ED, Remenschneider AK, Puram SV, Smith M, Herrmann BS, Cunnane ME, Brown MC, Lee DJ (2017) Auditory brainstem implant array position varies widely among adult and pediatric patients and is associated with perception. Ear Hear 38(6):343–351. https://doi.org/10.1097/AUD.0000000000000448

    Article  Google Scholar 

  7. Egra-Dagan D, van Beurden V, Barber SR, Carter CL, Cunnane ME, Brown MC, Herrmann BS, Lee DJ (2021) Adult auditory brainstem implant outcomes and three-dimensional electrode array position on computed tomography. Ear Hear 42(6):1741–1754

  8. Guex AA, Hight AE, Narasimhan S, Vachicouras N, Lee DJ, Lacour SP, Brown MC (2019) Auditory brainstem stimulation with a conformable microfabricated array elicits responses with tonotopically organized components. Hear Res 377:339–352. https://doi.org/10.1016/j.heares.2019.02.010

  9. Mauger SJ, Shivdasani MN, Rathbone GD, Argent RE, Paolini AG (2010) An in vivo investigation of first spike latencies in the inferior colliculus in response to multichannel penetrating auditory brainstem implant stimulation. J Neural Eng 7(3):036004. https://doi.org/10.1088/1741-2560/7/3/036004

  10. McCreery DB, Han M, Pikov V (2010) Neuronal activity evoked in the inferior colliculus of the cat by surface macroelectrodes and penetrating microelectrodes implanted in the cochlear nucleus. IEEE Trans Biomed Eng 57(7):1765–1773. https://doi.org/10.1109/TBME.2010.2046169

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCreery DB, Lossinsky A, Pikov V (2007) Performance of multisite silicon microprobes implanted chronically in the ventral cochlear nucleus of the cat. IEEE Trans Biomed Eng 54(6):1042–1052. https://doi.org/10.1109/TBME.2007.891167

    Article  PubMed  Google Scholar 

  12. McInturff S, Coen F-V, Hight AE, Tarabichi O, Kanumuri VV, Vachicouras N, Lacour SP, Lee DJ, Brown MC (2022) Comparison of responses to DCN vs. VCN stimulation in a mouse model of the auditory brainstem implant (ABI). JARO 23(3):391–412. https://doi.org/10.1007/s10162-022-00840-8

  13. Shivdasani MN, Mauger SJ, Argent RE, Rathbone GD, Paolini AG (2010) Inferior colliculus responses to dual-site intralamina stimulation in the ventral cochlear nucleus. J Comparat Neurol 518(20):4226–4242. https://doi.org/10.1002/cne.22450

    Article  PubMed  Google Scholar 

  14. Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG (2007) Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants. J Neurophysiol 99(1):1–13. https://doi.org/10.1152/jn.00629.2007

    Article  PubMed  Google Scholar 

  15. Mauger SJ, Shivdasani MN, Rathbone GD, Paolini AG (2012) An in vivo investigation of inferior colliculus single neuron responses to cochlear nucleus pulse train stimulation. J Neurophysiol 108(11):2999–3008. https://doi.org/10.1152/jn.01087.2011

    Article  PubMed  Google Scholar 

  16. McCreery DB, Han M, Pikov V, Yadav K, Pannu S (2013) Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate. J Neural Eng 10(5):1–17. https://doi.org/10.1088/1741-2560/10/5/056010

    Article  Google Scholar 

  17. Azadpour M, Shapiro WH, Roland Jr JT, Svirsky MA (2021) Assessing temporal responsiveness of primary stimulated neurons in auditory brainstem and cochlear implant users. Hear Res 401:108163. https://doi.org/10.1016/j.heares.2020.108163

  18. Carlyon RP, Deeks JM, McKay CM (2015) Effect of pulse rate and polarity on the sensitivity of auditory brainstem and cochlear implant users to electrical stimulation. JARO 16(5):653–668. https://doi.org/10.1007/s10162-015-0530-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Green T, Faulkner A, Rosen S (2012) Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users. Ear Hear 33(2):221–230. https://doi.org/10.1097/AUD.0b013e318230fff8

    Article  PubMed  Google Scholar 

  20. Kirby AE, Middlebrooks JC (2012) Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains. JARO 13(1):67–80. https://doi.org/10.1007/s10162-011-0293-0

    Article  PubMed  Google Scholar 

  21. Azadpour M, McKay CM, Svirsky MA (2018) Effect of pulse rate on loudness discrimination in cochlear implant users. JARO 19(3):287–299. https://doi.org/10.1007/s10162-018-0658-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Galvin JJ, Fu Q-J (2005) Effects of stimulation rate, mode and level on modulation detection by cochlear implant users. JARO 6(3):269–279. https://doi.org/10.1007/s10162-005-0007-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Babalian AL, Ryugo DK, Rouiller EM (2003) Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Exp Brain Res 153(4):452–460. https://doi.org/10.1007/s00221-003-1619-x

    Article  PubMed  Google Scholar 

  24. Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84(2):541–577. https://doi.org/10.1152/physrev.00029.2003

    Article  CAS  PubMed  Google Scholar 

  25. Fu QJ (2002) Temporal processing and speech recognition in cochlear implant users. NeuroReport 13(13):1635–1639. https://doi.org/10.1097/00001756-200209160-00013

    Article  PubMed  Google Scholar 

  26. McCreery DB, Yadev K, Han M (2018) Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; Implications for an advanced auditory brainstem implant. Hear Res 363:85–97. https://doi.org/10.1016/j.heares.2018.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guex AA, Vachicouras N, Hight AE, Brown MC, Lee DJ, Lacour SP (2015) Conducting polymer electrodes for auditory brainstem implants. J Mater Cham B Mater Biol Med 3(25):5021–5027. https://doi.org/10.1039/c5tb00099h

    Article  CAS  Google Scholar 

  28. Cochlear (2010) Cochlear Clinical Guidance Document

  29. Hight AE, Kozin ED, Darrow KN, Lehmann A, Boyden ES, Brown MC, Lee DJ (2015) Temporal resolution of ChR2 and chronos in an optogenetic-based auditory brainstem implant model: implications for the development and application of auditory opsins. Hear Res 322:235–241. https://doi.org/10.1016/j.heares.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Middlebrooks JC, Snyder RL (2010) Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci 30(5):1937–1946. https://doi.org/10.1523/JNEUROSCI.4949-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vollmer M, Snyder RL, Leake PA, Beitel RE, Moore CM, Rebscher SJ (1999) Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. J Neurophysiol 82(6):2883–2902. https://doi.org/10.1152/jn.1999.82.6.2883

    Article  CAS  PubMed  Google Scholar 

  32. Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. JARO 14(3):393–411. https://doi.org/10.1007/s10162-013-0380-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chung Y, Hancock KE, Nam SI, Delgutte B (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: Comparison with anesthetized preparations. J Neurosci 34(1):218–231. https://doi.org/10.1523/JNEUROSCI.2084-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anniko M, Sjostrom B, Webster D (1989) The effects of auditory deprivation on morphological maturation of the ventral cochlear nucleus. Arch Otorhinolaryngol 246:43–47. https://doi.org/10.1007/BF00454133

    Article  CAS  PubMed  Google Scholar 

  35. Glendenning KK, Masterton RB (1998) Comparative morphometry of mammalian central auditory systems: variation in nuclei and form of the ascending system. Brain Behav Evol 51(2):59–89. https://doi.org/10.1159/000006530

    Article  CAS  PubMed  Google Scholar 

  36. Godfrey DA, Lee AC, Hamilton WD, Benjamin LCI, Vishwanath S, Simo H, Godfrey LM, Mustapha A, Heffner RS (2016) Volumes of cochlear nucleus regions in rodents. Hear Res 339:161–174. https://doi.org/10.1097/SLA.0000000000001177.Complications

    Article  PubMed  PubMed Central  Google Scholar 

  37. Konigsmark BW, Murphy EA (1972) Volume of the ventral cochlear nucleus in man: its relationship to neuronal population and age. J Neuropathol Exp Neurol 2:304–3016. https://doi.org/10.1097/00005072-197204000-00006

    Article  Google Scholar 

  38. Lambert PR, Schwartz IR (1982) A longitudinal study of changes in the cochlear nucleus in the CBA mouse. Otolaryngol Head Neck Surg 90:787–794. https://doi.org/10.1177/019459988209000620

    Article  CAS  PubMed  Google Scholar 

  39. Seldon HL, Clark GM (1991) Human cochlear nucleus: comparison of Nissl-stained neurons from deaf and hearing patients. Brain Res 551(1–2):185–194. https://doi.org/10.1016/0006-8993(91)90932-L

    Article  CAS  PubMed  Google Scholar 

  40. Trune DR (1982) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus: I. Number, size, and density of its neurons. J Comp Neurol 209(4):409–424. https://doi.org/10.1002/cne.902090410

  41. Webster DB (1985) The spiral ganglion and cochlear nuclei of deafness mice. Hear Res 18:19–27. https://doi.org/10.1016/0378-5955(85)90107-8

    Article  CAS  PubMed  Google Scholar 

  42. Webster DB, Trune DR (1982) Cochlear nuclear complex of mice. Am J Anatom 163(2):103–130. https://doi.org/10.1002/aja.1001630202

    Article  CAS  PubMed  Google Scholar 

  43. O’Leary SJ, Tong YC, Clark GM (1995) Responses of dorsal cochlear nucleus single units to electrical pulse train stimulation of the auditory nerve with a cochlear implant electrode. J Acoust Soc Am 97(4):2378–2393. https://doi.org/10.1121/1.412977

    Article  PubMed  Google Scholar 

  44. Shofner WP, Young ED (1985) Excitatory/inhibitory response types in the cochlear nucleus: Relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. J Neurophysiol 54(4):917–939. https://doi.org/10.1152/jn.1985.54.4.917

    Article  CAS  PubMed  Google Scholar 

  45. Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39(2):282–300. https://doi.org/10.1152/jn.1976.39.2.282

    Article  CAS  PubMed  Google Scholar 

  46. Young ED, Voigt HF (1982) Response properties of type II and type III units in dorsal cochlear nucleus. Hear Res 6(2):153–169. https://doi.org/10.1016/0378-5955(82)90051-X

    Article  CAS  PubMed  Google Scholar 

  47. Hirsch JA, Oertel D (1988) Intrinsic properties of neurones in the dorsal cochlear nucleus of mice, in vitro. J Physiol 396(1):535–548. https://doi.org/10.1113/jphysiol.1988.sp016976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maffi CL, Tong YC, Clark GM (1988) Responses of cat ventral cochlear nucleus neurones to variations in the rate and intensity of electric current pulses. In Syka J, Masterson RB (eds) Auditory pathway. Springer, pp 149–154. https://doi.org/10.1007/978-1-4684-1300-7_21

  49. Godfrey DA, Matschinsky FM (1976) Approach to three-dimensional mapping of quantitative histochemical measurements applied to studies of the cochlear nucleus. J Histochem Cytochem 24(6):697–712. https://doi.org/10.1177/24.6.781128

    Article  CAS  PubMed  Google Scholar 

  50. Muniak MA, Rivas A, Montey KL, May BJ, Francis HW, Ryugo DK (2013) 3D model of frequency representation in the cochlear nucleus of the CBA/J mouse. J Comp Neurol 521(7):1510–1532. https://doi.org/10.1002/cne.23238

    Article  PubMed  PubMed Central  Google Scholar 

  51. Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27(2):104–110. https://doi.org/10.1016/j.tins.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  52. Zhang F, Miller CA, Robinson BK, Abbas PJ, Hu N (2007) Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. JARO 8(3):356–372. https://doi.org/10.1007/s10162-007-0086-7

    Article  PubMed  PubMed Central  Google Scholar 

  53. Snyder RL, Vollmer M, Moore CM, Rebscher SJ, Leake PA, Beitel RE (2000) Responses of inferior colliculus neurons to amplitude-modulated intracochlear electrical pulses in deaf cats. J Neurophysiol 84(1):166–183. https://doi.org/10.1152/jn.2000.84.1.166

    Article  CAS  PubMed  Google Scholar 

  54. Wilson BS, Finley CC, Lawson DT, Zerbi M (1997) Temporal representations with cochlear implants. Am J Otol 18(6 Suppl):S30–S34

    CAS  PubMed  Google Scholar 

  55. Follett KA, Mann MD (1986) Effective stimulation distance for current from macroelectrodes. Exp Neurol 92(1):75–91. https://doi.org/10.1016/0014-4886(86)90126-3

    Article  CAS  PubMed  Google Scholar 

  56. Monaghan JJM, Carlyon RP, Deeks JM (2022) Modulation depth discrimination by cochlear implant users. JARO 23(2):285–299. https://doi.org/10.1007/s10162-022-00834-6

    Article  PubMed  PubMed Central  Google Scholar 

  57. Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162(2):486–500. https://doi.org/10.1016/j.neuroscience.2009.04.056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ken Hancock and Evan Foss for their technical assistance, and Dr. Mahan Azadpour for his helpful comments on the research.

Funding

(1) Sinergia Grant from the Swiss National Science Foundation (530733); (2) Bertarelli Foundation program for Translational Neuroscience and Neuro-Engineering; (3) NIDCD/NIH grant (01089).

Author information

Authors and Affiliations

Authors

Contributions

SM performed all experiments. SM processed all data with significant help from VA. SM and MCB equally wrote manuscript with help from VA. SM and MCB contributed equally to experimental designs and protocols. FVC and SPL developed and provided electrical implants used in this study.

Corresponding author

Correspondence to Stephen McInturff.

Ethics declarations

Ethics Approval

All animal procedures were approved by the animal care and use protocols at the Massachusetts Eye & Ear Infirmary, Boston, MA (protocol number 2021N000064).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McInturff, S., Adenis, V., Coen, FV. et al. Sensitivity to Pulse Rate and Amplitude Modulation in an Animal Model of the Auditory Brainstem Implant (ABI). JARO 24, 365–384 (2023). https://doi.org/10.1007/s10162-023-00897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-023-00897-z

Keywords

Navigation