Skip to main content

Advertisement

Log in

Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere’s Disease

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Dysfunction of the endolymphatic sac (ES) is one of the etiologies of Meniere’s disease (MD), the mechanism of which remains unclear. The aim of the present study was to explore the molecular pathological characteristics of ES during the development of MD. Metabolomic profiling of ES luminal fluid from patients with MD and patients with acoustic neuroma (AN) was performed. Diluted ES luminal fluid (ELF) samples were obtained from 10 patients who underwent endolymphatic duct blockage for the treatment of intractable MD and from 6 patients who underwent translabyrinthine surgery for AN. ELF analysis was performed using liquid chromatography-mass spectrometry before the raw data were normalized and subjected to subsequent statistical analysis by MetaboAnalyst. Using thresholds of P ≤ 0.05 and variable important in projection > 1, a total of 111 differential metabolites were screened in the ELF, including 52 metabolites in negative mode and 59 in positive mode. Furthermore, 15 differentially altered metabolites corresponding to 15 compound names were identified using a Student’s t-test, including 7 significant increased metabolites and 8 significant decreased metabolites. Moreover, two differentially altered metabolites, hyaluronic acid (HA) and 4-hydroxynonenal (4-HNE), were validated to be upregulated in the epithelial lining of the ES, as well as in the subepithelial connective-tissue in patients with MD comparing with that in patients with AN. Among these differentially altered metabolites, an upregulated expression of HA detected in the ES lumen of the patients with MD was supposed to be associated with the increased endolymph in ES, while an increased level of 4-HNE found in the ELF of the patients with MD provided direct evidence to support that oxidative damage and inflammatory lesions underlie the mechanism of MD. Furthermore, citrate and ethylenediaminetetraacetic acid were detected to be decreased substantially in the ELF of the patients with MD, suggesting the elevated endolymphatic Ca2+ in the ears with chronic endolymphatic hydrops is likely to be associated with the reduction of these two chelators of Ca2+ in ES. The results in the present study indicate metabolomic analysis in the ELF of the patients with MD can potentially improve our understanding on the molecular pathophysiological mechanism in the ES during the development of MD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

References

  1. Kim SH, Nam G-S, Choi JY (2019) Pathophysiologic findings in the human endolymphatic sac in endolymphatic hydrops: functional and molecular evidence. Annals of Otology, Rhinology & Laryngology 128(6S):76S-83S. https://doi.org/10.1177/0003489419837993

    Article  Google Scholar 

  2. Friberg U, Jansson B, Rask-Andersen H, Bagger-Sjoback D (1988) Variations in surgical anatomy of the endolymphatic sac. Arch Otolaryngol Head Neck Surg 114(4):389–394. https://doi.org/10.1001/archotol.1988.01860160033016

    Article  CAS  PubMed  Google Scholar 

  3. Møller MN, Caye-Thomasen P, Qvortrup K (2013) Oxygenated fixation demonstrates novel and improved ultrastructural features of the human endolymphatic sac. Laryngoscope 123(8):1967–1975. https://doi.org/10.1002/lary.23929

    Article  PubMed  Google Scholar 

  4. Mori N, Miyashita T, Inamoto R, Matsubara A, Mori T, Akiyama K et al (2016) Ion transport its regulation in the endolymphatic sac: suggestions for clinical aspects of Meniere’s disease. Eur Arch Otorhinolaryngol 274(4):1813–1820. https://doi.org/10.1007/s00405-016-4362-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ignatova EG, Thalmann I, Xu B, Ornitz DM, Thalmann R (2004) Molecular mechanisms underlying ectopic otoconia-like particles in the endolymphatic sac of embryonic mice. Hear Res 194(1–2):65–72. https://doi.org/10.1016/j.heares.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  6. Møller MN, Kirkeby S, Vikeså J, Nielsen FC, Cayé-Thomasen P (2015) Gene expression demonstrates an immunological capacity of the human endolymphatic sac. Laryngoscope 125(8):E269–E275. https://doi.org/10.1002/lary.25242

    Article  PubMed  Google Scholar 

  7. Kim H-M, Wangemann P (2010) Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PloS One 5(11):e14041. https://doi.org/10.1371/journal.pone.0014041

  8. Lin H-C, Ren Y, Lysaght AC, Kao S-Y, Stankovic KM (2019) Proteome of normal human perilymph and perilymph from people with disabling vertigo. PloS One 14(6):e0218292. https://doi.org/10.1371/journal.pone.0218292

  9. Yazawa Y, Suzuki M, Tanaka H, Kitano H, Kitajima K (1998) Surgical observations on the endolymphatic sac in Meniere’s disease. Am J Otol 19(1):71–75

    CAS  PubMed  Google Scholar 

  10. Shew M, Wichova H, St Peter M, Warnecke A, Staecker H (2021) Distinct microRNA profiles in the perilymph and serum of patients with Menière’s disease. Front Neurol 12:646928. https://doi.org/10.3389/fneur.2021.646928

  11. Kim SH, Kim U-K, Lee W-S, Bok J, Song J-W, Seong JK et al (2011) Albumin-like protein is the major protein constituent of luminal fluid in the human endolymphatic sac. PloS One 6(6):e21656. https://doi.org/10.3389/fneur.2021.646928

  12. Kim SH, Kim JY, Lee HJ, Gi M, Kim BG, Choi JY (2014) Autoimmunity as a candidate for the etiopathogenesis of Meniere’s disease: detection of autoimmune reactions and diagnostic biomarker candidate. PloS One 9(10):e111039. https://doi.org/10.1371/journal.pone.0111039.

  13. Huang C, Wang Q, Pan X, Li W, Liu W, Jiang WQ et al (2022) Up-regulated expression of interferon-gamma, interleukin-6 and tumor necrosis factor-alpha in the endolymphatic sac of Meniere’s disease suggesting the local inflammatory response underlies the mechanism of this disease. Front Neurol 13:781031. https://doi.org/10.3389/fneur.2022.781031.

  14. MadjiHounoum B, Blasco H, Emond P, Mavel S (2016) Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: experimental design, recommendations, and applications. TrAC, Trends Anal Chem 75:118–128

    Article  CAS  Google Scholar 

  15. Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269. https://doi.org/10.1038/nrm3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al (2017) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089

  17. Mavel S, Lefèvre A, Bakhos D, Dufour-Rainfray D, Blasco H, Emond P (2018) Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy. Hear Res 367:129–136. https://doi.org/10.1016/j.heares.2018.05.016

    Article  PubMed  Google Scholar 

  18. Trinh B, Emond A, Lefevre L et al (2019) Relationship between metabolomics profile of perilymph in Cochlear-implanted patients and duration of hearing loss. Metabolites 9(11):262. https://doi.org/10.3390/metabo9110262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujita T, Yamashita D, Irino Y, Kitamoto J, Fukuda Y, Inokuchi G et al (2015) Metabolomic profiling in inner ear fluid by gas chromatography/mass spectrometry in guinea pig cochlea. Neurosci Lett 606:188–193. https://doi.org/10.1016/j.neulet.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  20. Fransson AE, Kisiel M, Pirttilä K, Pettersson C, Videhult Pierre P, Laurell GFE (2017) Hydrogen inhalation protects against ototoxicity induced by intravenous cisplatin in the guinea pig. Front Cell Neurosci 11. https://doi.org/10.3389/fncel.2017.00280

  21. Lopez-Escamez JA, Carey J, Chung W-H, Goebel JA, Magnusson M, Mandalà M et al (2015) Diagnostic criteria for Menière’s disease. J Vestib Res 25(1):1–7. https://doi.org/10.3233/ves-150549

    Article  PubMed  Google Scholar 

  22. Ma N, Karam I, Liu X-W, Kong X-J, Qin Z, Li S-H et al (2017) UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats. Toxicol Appl Pharmacol 332:40–51. https://doi.org/10.1016/j.taap.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  23. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 68(1). https://doi.org/10.1002/cpbi.86

  24. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494. https://doi.org/10.1093/nar/gky310

  25. Danckwardt-Lillieström N, Laurent C, Hellström S, Friberg U, Kinnefors A, Rask-andersen H (1994) Localization of hyaluronan in the human endolymphatic sac: a study using the affinity hyaluronan binding protein. Acta Otolaryngol 114(4):382–386. https://doi.org/10.3109/00016489409126074

    Article  PubMed  Google Scholar 

  26. Foucaud L, Goulaouic S, Bennasroune A, Laval-Gilly P, Brown D, Stone V et al (2010) Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule? Toxicol In Vitro 24(6):1512–1520. https://doi.org/10.1016/j.tiv.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  27. Calabrese V, Cornelius C, Maiolino L, Luca M, Chiaramonte R, Toscano MA et al (2010) Oxidative stress, redox homeostasis and cellular stress response in Ménière’s disease: role of Vitagenes. Neurochem Res 35(12):2208–2217. https://doi.org/10.1007/s11064-010-0304-2

    Article  CAS  PubMed  Google Scholar 

  28. Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochemical Journal 336(1):1–17. https://doi.org/10.1042/bj3360001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watanabe K, Tomiyama S, Jinnouchi K et al (2001) Expression of inducible nitric oxide synthase (iNOS/NOS II) in the hydropic vestibule after injection of keyhole limpet hemocyanin into the endolymphatic sac of guinea pigs. J Vestib Res 11(2):67–71. https://doi.org/10.3233/VES-2001-11201

    Article  CAS  PubMed  Google Scholar 

  30. Ishiyama G, Wester J, Lopez IA, Beltran-Parrazal L, Ishiyama A (2018) Oxidative stress in the blood labyrinthine barrier in the macula utricle of Meniere’s disease patients. Front Physiol 9. https://doi.org/10.3389/fphys.2018.01068

  31. Ishiyama G, Lopez IA, Acuna D, Ishiyama A (2019) Investigations of the microvasculature of the human macula utricle in Meniere’s disease. Front Cell Neurosci 13. https://doi.org/10.3389/fncel.2019.00445

  32. Tryon JH, Rote JC, Chen L, Robey MT, Vega MM, Phua WC et al (2020) Genome mining and metabolomics uncover a rare d-capreomycidine containing natural product and its biosynthetic gene cluster. ACS Chem Biol. https://doi.org/10.1021/acschembio.0c00663

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frejo L, Martin-Sanz E, Teggi R, Trinidad G, Soto-Varela A, Santos-Perez S et al (2017) Extended phenotype and clinical subgroups in unilateral Meniere disease: a cross-sectional study with cluster analysis. Clin Otolaryngol 42(6):1172–1180. https://doi.org/10.1111/coa.12844

    Article  CAS  PubMed  Google Scholar 

  34. Frejo L, Gallego-Martinez A, Requena T, Martin-Sanz E, Amor-Dorado JC, Soto-Varela A et al (2018) Proinflammatory cytokines and response to molds in mononuclear cells of patients with Meniere disease. Sci Rep 8(1):5974. https://doi.org/10.1038/s41598-018-23911-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flook M, Escalera-balsera A, Gallego-martinez A, Espinosa-Sanchez JM, Aran I, Soto-Varela A et al (2021) DNA methylation signature in mononuclear cells and proinflammatory cytokines may define molecular subtypes in sporadic Meniere disease. Biomedicines 9:1530. https://doi.org/10.3390/biomedicines9111530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Breitzig M, Bhimineni C, Lockey R, Kolliputi N (2016) 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol 311(4):C537–C543. https://doi.org/10.1152/ajpcell.00101.2016

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu H, Gambino F, Algenio CS, Wu C, Gao Y, Bouchard CS et al (2020) Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefe’s Archive for Clinical and Experimental Ophthalmology. https://doi.org/10.1007/s00417-020-04647-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eckhard AH, Zhu M, O’Malley JT, Williams GH, Loffing J, Rauch SD et al (2018) Inner ear pathologies impair sodium-regulated ion transport in Meniere’s disease. Acta Neuropathol 137(2):343–357. https://doi.org/10.1007/s00401-018-1927-7

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kobayashi T, Chanmee T, Itano N (2020) Hyaluronan: metabolism and function. Biomolecules 10(11):1525. https://doi.org/10.3390/biom10111525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Friberg U, Erwall C, Bagger-sjöbäck D, Rask-Andersen H (1989) Hyaluronan content in human inner ear fluids. Acta Otolaryngol 108(1–2):62–67. https://doi.org/10.3109/00016488909107393

    Article  CAS  PubMed  Google Scholar 

  41. Erwall C (1988) General effects of hyperosmolar agents on the endolymphatic sac. Hear Res 36(2–3):277–286. https://doi.org/10.1016/0378-5955(88)90068-8

    Article  CAS  PubMed  Google Scholar 

  42. Takumida M, Hirakawa K, Harada Y (1995) Effect of glycerol on the guinea pig inner ear after removal of the endolymphatic sac. ORL 57(1):5–9. https://doi.org/10.1159/000276696

    Article  CAS  PubMed  Google Scholar 

  43. Hultcrantz M, Bagger-Sjöbäck D, Barbara M (1997) Presence of glycosaminoglycans in the endolymphatic sac. Acta Otolaryngol 117(4):518–522. https://doi.org/10.3109/00016489709113431

    Article  CAS  PubMed  Google Scholar 

  44. Anquan P, Junjiao H, Qin W, Xueying P, Zhiwen Z, Wenqi J et al (2021) A comparison of endolymphatic duct blockage, endolymphatic sac drainage and endolymphatic sac decompression surgery in reversing endolymphatic hydrops in Meniere’s disease. J Otolaryngol Head Neck Surg 50:70. https://doi.org/10.1186/s40463-021-00545-7

    Article  Google Scholar 

  45. He J, Peng A, Hu J, Zhang Z, Chen Y et al (2021) Dynamics in endolymphatic hydrops & symptoms in Meniere’s disease after endolymphatic duct blockage, preliminary results. Front Neurol 11:622760. https://doi.org/10.3389/fneur.2020.622760

  46. El Ayadi A, Salsbury JR, Enkhbaatar P, Herndon DN, Ansari NH (2021) Metal chelation attenuates oxidative stress, inflammation, and vertical burn progression in a porcine brass comb burn model. Redox Biol 45:102034. https://doi.org/10.1016/j.redox.2021.102034

  47. Liu P, Zhang M, Shoeb M, Hogan D, Tang L, Syed MF et al (2014) Metal chelator combined with permeability enhancer ameliorates oxidative stress-associated neurodegeneration in rat eyes with elevated intraocular pressure. Free Radical Biol Med 69:289–299. https://doi.org/10.1016/j.freeradbiomed.2014.01.039

    Article  CAS  Google Scholar 

  48. Akram M (2013) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68(3):475–478. https://doi.org/10.1007/s12013-013-9750-1

    Article  CAS  Google Scholar 

  49. Ma C, Gerhard E, Lu D, Yang J (2018) Citrate chemistry and biology for biomaterials design. Biomaterials 178:383–400. https://doi.org/10.1016/j.biomaterials.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Caudarella R, Vescini F (2009) Urinary citrate and renal stone disease: the preventive role of alkali citrate treatment. Arch Ital Urol Androl 81(3):182–187

    PubMed  Google Scholar 

  51. Salt AN, Inamura N, Thalmann R, Vora A (1989) Calcium gradients in inner ear endolymph. Am J Otolaryngol 10(6):371–375. https://doi.org/10.1016/0196-0709(89)90030-6

    Article  CAS  PubMed  Google Scholar 

  52. Bächinger D, Egli H, Goosmann MM, MongeNaldi A, Eckhard AH (2019) Immunolocalization of calcium sensing and transport proteins in the murine endolymphatic sac indicates calciostatic functions within the inner ear. Cell Tissue Res. https://doi.org/10.1007/s00441-019-03062-2

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nakaya K, Harbidge DG, Wangemann P, Schultz BD, Green ED, Wall SM et al (2007) Lack of pendrin HCO3−transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. American Journal of Physiology-Renal Physiology 292(5):F1314–F1321. https://doi.org/10.1152/ajprenal.00432.2006

    Article  CAS  PubMed  Google Scholar 

  54. Salt AN, DeMott J (1994) Endolymph calcium increases with time after surgical induction of hydrops in guinea-pigs. Hear Res 74(1–2):115–121. https://doi.org/10.1016/0378-5955(94)90180-5

    Article  CAS  PubMed  Google Scholar 

  55. Ninoyu O, Meyer ZumGottesberge AM (1986) Changes in Ca++ activity and DC potential in experimentally induced endolymphatic hydrops. Arch Otorhinolaryngol 243(2):106–107. https://doi.org/10.1007/bf00453759

    Article  CAS  PubMed  Google Scholar 

  56. Karch-Georges A, Veillon F, Vuong H, Rohmer D, Karol A, Charpiot A et al (2019) MRI of endolymphatic hydrops in patients with vestibular schwannomas: a case-controlled study using non-enhanced T2-weighted images at 3 Teslas. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-019-05395-8

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81570928).

Author information

Authors and Affiliations

Authors

Contributions

Li Huang connected data and prepared the first draft. Qin Wang, Huang Chao, and Zhou were responsible for the design, material preparation, data collection, and analysis. Zhiwen Zhang and Anquan Peng designed the study conception and revised the manuscript. All authors read the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Anquan Peng or Zhiwen Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Li Huang is the first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 155 KB)

Supplementary file2 (PDF 107 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Wang, Q., Huang, C. et al. Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere’s Disease. JARO 24, 239–251 (2023). https://doi.org/10.1007/s10162-023-00887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-023-00887-1

Keywords

Navigation