Skip to main content

Advertisement

Log in

How Peripheral Vestibular Damage Affects Velocity Storage: a Causative Explanation

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Velocity storage is a centrally-mediated mechanism that processes peripheral vestibular inputs. One prominent aspect of velocity storage is its effect on dynamic responses to yaw rotation. Specifically, when normal human subjects are accelerated to constant angular yaw velocity, horizontal eye movements and perceived angular velocity decay exponentially with a time constant circa 15–30 s, even though the input from the vestibular periphery decays much faster (~ 6 s). Peripheral vestibular damage causes a time constant reduction, which is useful for clinical diagnoses, but a mechanistic explanation for the relationship between vestibular damage and changes in these behavioral dynamics is lacking. It has been hypothesized that Bayesian optimization determines ideal velocity storage dynamics based on statistics of vestibular noise and experienced motion. Specifically, while a longer time constant would make the central estimate of angular head velocity closer to actual head motion, it may also result in the accumulation of neural noise which simultaneously degrades precision. Thus, the brain may balance these two effects by determining the time constant that optimizes behavior. We applied a Bayesian optimal Kalman filter to determine the ideal velocity storage time constant for unilateral damage. Predicted time constants were substantially lower than normal and similar to patients. Building on our past work showing that Bayesian optimization explains age-related changes in velocity storage, we also modeled interactions between age-related hair cell loss and peripheral damage. These results provide a plausible mechanistic explanation for changes in velocity storage after peripheral damage. Results also suggested that even after peripheral damage, noise originating in the periphery or early central processing may remain relevant in neurocomputations. Overall, our findings support the hypothesis that the brain optimizes velocity storage based on the vestibular signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB (2009) Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med 169:938–944

    Article  PubMed  Google Scholar 

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Article  CAS  PubMed  Google Scholar 

  • Allum JH, Yamane M, Pfaltz CR (1988) Long-term modifications of vertical and horizontal vestibulo-ocular reflex dynamics in man. I. After acute unilateral peripheral vestibular paralysis. Acta Otolaryngol 105:328–337

    Article  CAS  PubMed  Google Scholar 

  • Baloh RW, Honrubia V, Yee RD, Hess K (1984) Changes in the human vestibulo- ocular reflex after loss of peripheral sensitivity. Ann Neurol 16:222–228

    Article  CAS  PubMed  Google Scholar 

  • Beraneck M, Hachemaoui M, Idoux E, Ris L, Uno A, Godaux E, Vidal PP, Moore LE, Vibert N (2003) Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy. J Neurophysiol 90:184–203

    Article  PubMed  Google Scholar 

  • Bertolini G, Ramat S, Laurens J, Bockisch CJ, Marti S, Straumann D, Palla A (2011) Velocity storage contribution to vestibular self-motion perception in healthy human subjects. J Neurophysiol 105:209–223

    Article  CAS  PubMed  Google Scholar 

  • Bermudez Rey MC, Clark TK, Wang W, Leeder T, Brian Y, Merfled DM (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilien V (1993) Modeling human spatial orientation perception in a centrifuge using estimation theory (dissertation). Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Black FO, Peterka RJ, Elardo SM (1987) Vestibular reflex changes following aminoglycoside induced ototoxicity. Laryngoscope 97:582–586

    Article  CAS  PubMed  Google Scholar 

  • Black FO, Peterka RJ, Shupert CL, Nashner LM (1989) Effects of unilateral loss of vestibular function on the vestibulo-ocular reflex and postural control. Ann Otol Rhinol Laryngol 98:884–889

    Article  CAS  PubMed  Google Scholar 

  • Blakley BW (2000) Update on intratympanic gentamicin for Menière’s disease. Laryngoscope 110:236–240

    Article  CAS  PubMed  Google Scholar 

  • Blakley BW, Barber HO, Tomlinson RD, McIlmoyl L (1989) Changes in the time constants of the vestibulo-ocular reflex and optokinetic afternystagmus following unilateral ablative vestibular surgery. J Otolaryngol 18:210–217

    CAS  PubMed  Google Scholar 

  • Borah J, Young LR, Curry RE (1988) Optimal estimator model for human spatial orientation. Ann NY Acad Sci 545:51–73

    Article  CAS  PubMed  Google Scholar 

  • Boyle R, Highstein SM (1990) Efferent vestibular system in the toadfish: action upon horizontal semicircular canal. J Neurosci 10:1570–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brantberg K, Magnusson M (1990) The dynamics of the vestibulo-ocular reflex in patients with vestibular neuritis. Am J Otolaryngol 11:345–351

    Article  CAS  PubMed  Google Scholar 

  • Brichta AM, Goldberg JM (2000) Responses to efferent activation and excitatory response-intensity relations of turtle posterior-crista afferents. J Neurophysiol 83:1224–1242

    Article  CAS  PubMed  Google Scholar 

  • Burns JC, Stone JS (2017) Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 65:96–105

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Kerem R, Kisilevsky V, Einarson TR, Kozer E, Koren G, Rutka JA (2004) Intratympanic gentamicin for Menière’s disease: a meta-analysis. Laryngoscope 114(12):2085–2091

    Article  CAS  PubMed  Google Scholar 

  • Cousins S, Kaski D, Cutfield N, Seemungal B, Golding JF, Gresty M, Glasauer S, Bronstein AM (2013) Vestibular perception following acute unilateral vestibular lesions. PLoS ONE 8:e61862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curthoys IS, Halmagyi GM (1999) Vestibular compensation. Adv Otorhinolaryngol 55:82–110

    CAS  PubMed  Google Scholar 

  • Cutfield NJ, Cousins S, Seemungal BM, Gresty MA, Bronstein AM (2011) Vestibular perceptual thresholds to angular rotation in acute unilateral vestibular paresis and with galvanic stimulation. Ann N Y Acad Sci 1233:256–262

    Article  PubMed  Google Scholar 

  • Diaz Artiles A, Karmali F (2021) Vestibular precision at the level of perception, eye movements, posture, and neurons. Neurosci 468:282–320

    Article  CAS  Google Scholar 

  • Dickman JD, Correia MJ (1993) Bilateral communication between vestibular labyrinths in pigeons. Neurosci 57:1097–1108

    Article  CAS  Google Scholar 

  • Dimitri PS, Wall C 3rd, Oas JG (1996) Classification of human rotation test results using parametric modeling and multivariate statistics. Acta Otolaryngol 116:497–506

    Article  CAS  PubMed  Google Scholar 

  • Dimitri PS, Wall C 3rd, Oas JG, Rauch SD (2001) Application of multivariate statistics to vestibular testing: discriminating between Menière’s disease and migraine associated dizziness. J Vestib Res 11:53–65

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA, Xue J, Kalluri R (2008) Ion channels in mammalian vestibular afferents may set regularity of firing. J of Exp Biol 211:1764–1774

    Article  CAS  Google Scholar 

  • Ernst M, Banks M (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    Article  CAS  PubMed  Google Scholar 

  • Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    Article  CAS  PubMed  Google Scholar 

  • Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009) Dynamic reweighting of visual and vestibular cues during self-motion perception. J Neurosci 29:15601–15612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetter M, Zee DS (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59:370–393

    Article  CAS  PubMed  Google Scholar 

  • Gelb A (1992) Applied optimal estimation. MIT press, Cambridge, MA

    Google Scholar 

  • Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025

    Article  CAS  PubMed  Google Scholar 

  • Green DM, Sweets JA (1996) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Gu Y, Angelaki DE, DeAngelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillotte A, Zand A, Ortiz M, Gan Y, Rivera A, Litofsky NS, Miller DC (2020) Clinical outcomes of resecting scarpa’s ganglion during vestibular schwannoma surgery. J Clin Neurosci 76:114–117

  • Hillis JM, Watt SJ, Landy MS, Banks MS (2004) Slant from texture and disparity cues: optimal cue combination. J vis 4:967–992

    PubMed  Google Scholar 

  • Hirvonen TP, Minor LB, Hullar TE, Carey JP (2005) Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. J Neurophysiol 93:643–655

    Article  PubMed  Google Scholar 

  • Jacobs RA (1999) Optimal integration of texture and motion cues to depth. Vision Res 39:3621–3629

    Article  CAS  PubMed  Google Scholar 

  • Jamali M, Mitchell DE, Dale A, Carriot J, Sadeghi SG, Cullen KE (2014) Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution. J Physiol 592:1565–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen DW (1983) Survival function in the deafferented vestibular nerve. Brain Res 273:175–178

    Article  CAS  PubMed  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35–45

    Article  Google Scholar 

  • Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Basic Eng 83:95–108

    Article  Google Scholar 

  • Karmali F (2019) The velocity storage time constant: balancing between accuracy and precision. Prog Brain Res 248:269–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Karmali F, Bermúdez Rey MC, Clark TK, Wang W, Merfeld DM (2017) Multivariate analyses of balance test performance, vestibular thresholds, and age [published correction appears in Front Neurol. 2020 Nov 26;11:556797] Front Neurol 8:578

  • Karmali F, Haburcakova C, Gong W, Della Santina CC, Merfeld DM, Lewis RF (2021) An implanted vestibular prosthesis improves spatial orientation in animals with severe vestibular damage. J Neurosci 41:3879–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmali F, Merfeld DM (2012) A distributed, dynamic, parallel computational model: the role of noise in velocity storage. J Neurophysiol 108:390–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Karmali F, Whitman GT, Lewis RF (2018) Bayesian optimal adaptation explains age-related human sensorimotor changes. J Neurophysiol 119:509–520

    Article  PubMed  Google Scholar 

  • King S, Dahlem K, Karmali F, Stankovic KM, Welling DB, Lewis RF (2021) Imbalance and dizziness caused by unilateral vestibular schwannomas correlate with vestibulo-ocular reflex precision and bias. J Neurophysiol 127:596–606

    Article  Google Scholar 

  • Knill DC, Saunders JA (2003) Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res 43(24):2539–2558

    Article  PubMed  Google Scholar 

  • Landy MS, Maloney LT, Johnston EB, Young M (1995) Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res 35:389–412

    Article  CAS  PubMed  Google Scholar 

  • Laurens J, Angelaki DE (2011) The functional significance of velocity storage and its dependence on gravity. Exp Brain Res 210:407–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurens J, Angelaki DE (2017) A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 6:e28074

  • Laurens J, Droulez J (2007) Bayesian processing of vestibular information. Biol Cybern 96:389–404

    Article  PubMed  Google Scholar 

  • Liu S, Dickman JD, Newlands SD, DeAngelis GC, Angelaki DE (2013) Reduced choice-related activity and correlated noise accompany perceptual deficits following unilateral vestibular lesion. Proc Natl Acad Sci USA 110(44):17999–18004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNeilage PR, Ganesan N, Angelaki DE (2008) Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. J Neurophysiol 100:2981–2996

    Article  PubMed  PubMed Central  Google Scholar 

  • Massot C, Chacron MJ, Cullen KE (2011) Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. J Neurophysiol 105:1798–1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Merchant SN, Tsuji K, Wall C 3rd, Velázquez-Villaseñor L, Glynn RJ, Rauch SD (2000) Temporal bone studies of the human peripheral vestibular system. Normative vestibular hair cell data. Ann Otol Rhinol Laryngol Suppl 109(5_suppl):3–13

  • Melvill Jones GM, Milsum JH (1971) Frequency-response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J Physiol 219:191–215

    Article  PubMed Central  Google Scholar 

  • Merfeld DM (2011) Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations. Exp Brain Res 210:389–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Merfeld DM, Young LR, Oman CM, Shelhamert MJ (1993) A multidimensional model of the effect of gravity on the spatial orientation of the monkey. J Vestib Res 3:141–161

    Article  CAS  PubMed  Google Scholar 

  • Newlands SD, Lin N, Wei M (2014) Responses of non-eye movement central vestibular neurons to sinusoidal horizontal translation in compensated macaques after unilateral labyrinthectomy. J Neurophysiol 112(1):9–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Newlands SD, Wei M (2013) Tests of linearity in the responses of eye-movement-sensitive vestibular neurons to sinusoidal yaw rotation. J Neurophysiol 109(10):2571–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouri S, Karmali F (2018) Variability in the vestibulo-ocular reflex and vestibular perception. Neurosci 393:350–365

    Article  CAS  Google Scholar 

  • Paige GD (1983) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. J Neurophysiol 49:152–168

    Article  CAS  PubMed  Google Scholar 

  • Paige GD (1992) Senescence of human visual-vestibular interactions. 1. Vestibulo- ocular reflex and adaptive plasticity with aging. J Vestib Res 2:133–151

    CAS  PubMed  Google Scholar 

  • Paulin MG, Hoffman LF, Assad C (2001) A model of cerebellar computations for dynamical state estimation. Auton Robots 11:279–284

    Article  CAS  PubMed  Google Scholar 

  • Paulin MG, Nelson ME, Bower JM (1989) Dynamics of compensatory eye movement control: an optimal estimation analysis of the vestibulo-ocular reflex. Int J Neural Syst 1:23

    Article  Google Scholar 

  • Pommellet P (1990) Suboptimal estimator for the spatial orientation of a pilot (dissertation). Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Priesol AJ, Cao M, Brodley CE, Lewis RF (2015) Clinical vestibular testing assessed with machine learning algorithms. JAMA Otolaryngol Head Neck Surg 141:364–372

    Article  PubMed  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1977) A velocity storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons, Developments in Neuroscience, vol 1. Amsterdam: Elsevier/North-Holland Biomedical, p 37–47

  • Ris L, Godaux E (1998) Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol 80:2352–2367

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA (1977) Vestibular and optokinetic symbiosis: an example of explaining by modeling. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons, Developments in Neuroscience, vol 1. Amsterdam: Elsevier/North- Holland Biomedical, p 49–58

  • Sadeghi SG, Minor LB, Cullen KE (2011) Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation. J Neurophysiol 105:661–673

    Article  PubMed  Google Scholar 

  • Sadeghi SG, Minor LB, Cullen KE (2007) Response of vestibular-nerve afferents to active and passive rotations under normal conditions and after unilateral labyrinthectomy. J Neurophysiol 97:1503–1514

    Article  PubMed  Google Scholar 

  • Sadeghi SG, Pyott SJ, Yu Z, Glowatzki E (2014) Glutamatergic signaling at the vestibular hair cell calyx synapse. J Neurosci 34:14536–14550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selva P (2009) Modeling of the vestibular system and nonlinear models for human spatial orientation perception (Dissertation). Université de Toulouse, Toulouse, France

    Google Scholar 

  • Selva P, Oman CM (2012) Relationships between observer and Kalman filter models for human dynamic spatial orientation. J Vestib Res 22:69–80

    Article  PubMed  Google Scholar 

  • Sirkin DW, Precht W, Courjon JH (1984) Initial rapid phase of recovery from unilateral vestibular lesion in rat not dependent on survival of central portion of vestibular nerve. Brain Res 302:245–256

    Article  CAS  PubMed  Google Scholar 

  • Smith PF, Curthoys IS (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Rev 14:155–180

    Article  CAS  PubMed  Google Scholar 

  • Songer JE, Eatock RA (2013) Tuning and timing in mammalian type I hair cells and calyceal synapses. J Neurosci 33(8):3706–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultemeier DR, Hoffman LF (2017) Partial aminoglycoside lesions in vestibular epithelia reveal broad sensory dysfunction associated with modest hair cell loss and afferent calyx retraction. Front Cell Neurosci 11:331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wade SW, Halmagyi GM, Black FO, McGarvie LA (1999) Time constant of nystagmus slow-phase velocity to yaw-axis rotation as a function of the severity of unilateral caloric paresis. Am J Oto 20:471–478

    CAS  Google Scholar 

  • Yu XJ, Thomassen JS, Dickman JD, Newlands SD, Angelaki DE (2014) Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion. J of Neurophysiol 112:870–889

    Article  Google Scholar 

  • Zobeiri OA, Ostrander B, Roat J, Agrawal Y, Cullen KE (2021a) Loss of peripheral vestibular input alters the statistics of head movement experienced during natural self-motion. J Physiol 599:2239–2254

    Article  CAS  PubMed  Google Scholar 

  • Zobeiri OA, Mischler GM, King SA, Lewis RF, Cullen KE (2021b) Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection. Sci Rep 11:1–4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Stephan Glasauer suggesting the idea underlying scenario 5.

Funding

This research was supported by awards from the NIH/NIDCD (R01-DC018287, AM/RFL/FK) and the DoD/ONR MURI program (N000142012163, FK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Karmali.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we provide derivations for the equations for each unilateral damage scenario shown in Table 2. We begin by listing the relevant variables, followed by derivations for each scenario.

\({w}_{n}\): the sum of age-adjusted process noise, for normal vestibular function, arising from the ipsilateral vestibular system \({w}_{in}\) and the contralateral vestibular system \({w}_{cn}\).

\({v}_{n}\): age-adjusted measurement noise and is the combined noise arising from all neural sources, with contributions from the ipsilateral \({v}_{in}\) and the contralateral \({v}_{cn}\) vestibular system.

\({Q}_{n}\): the variance of age-adjusted process noise, for normal vestibular function, and \({Q}_{in}\) and \({Q}_{cn}\) represent contributions from the ipsilateral and contralateral vestibular systems, respectively.

\({R}_{n}\): the variance of age-adjusted measurement noise, for normal vestibular function, and \({R}_{in}\) and \({R}_{cn}\) represent contributions from the ipsilateral and contralateral vestibular systems, respectively.

\({R}_{i1},{R}_{i2}, {R}_{i3}, {R}_{i4}, {R}_{i5}\): the measurement noise in the ipsilateral vestibular system after adjustment for unilateral damage and age for each of the five scenarios.

\({R}_{c1},{R}_{c2}, {R}_{c3}, {R}_{c4}, {R}_{c5}\): the measurement noise in the contralateral vestibular system after adjustment for unilateral damage and age for each of the five scenarios.

\({R}_{1},{R}_{2}, {R}_{3}, {R}_{4}, {R}_{5}\): the measurement noise after convergence of the ipsilateral and contralateral vestibular inputs after adjustment for unilateral damage and age for each of the five scenarios.

\({Q}_{1},{Q}_{2}, {Q}_{3}, {Q}_{4}, {Q}_{5}\): the process noise after convergence of the ipsilateral and contralateral vestibular inputs after adjustment for unilateral damage and age for each of the five scenarios.

\(SN{R}_{n}\): the age adjusted signal-to-noise ratio for normal vestibular function (i.e., \({Q}_{n}/{R}_{n}\)).

\(SN{R}_{1}, SN{R}_{2} , SN{R}_{3} , SN{R}_{4} , SN{R}_{5}\): the signal-to-noise ratios after adjustment for unilateral damage and age for each of the five scenarios

$${w}_{1}={w}_{2}={w}_{3}={w}_{4}={w}_{5}={w}_{cn}=0.5 \cdot {w}_{n}$$
$${w}_{n}=0.5\cdot {w}_{in}+0.5\cdot {w}_{cn}$$
$$\begin{aligned}{Q}_{n}&=var({w}_{n})\\&=var(0.5\cdot {w}_{in}+0.5\cdot {w}_{cn})\\&={0.5}^{2}\cdot var({w}_{in})+{0.5}^{2}\cdot var({w}_{cn})\\&={0.5}^{2}\cdot {Q}_{in}+{0.5}^{2}\cdot {Q}_{cn}\end{aligned}$$
$${R}_{n}={0.5}^{2}{\cdot R}_{in}+{0.5}^{2}{R}_{cn}$$
$${R}_{in}={R}_{cn}=2{\cdot R}_{n}$$

Scenario 1: loses signal, loses noise, no change in contralateral noise

$${R}_{i1}=0\cdot {R}_{in}=0$$
$${R}_{c1}={R}_{cn}=2\cdot {R}_{n}$$
$${Q}_{1}={0.5}^{2}\cdot {Q}_{n}$$
$$\begin{aligned}{R}_{1}&={0.5}^{2}\cdot {R}_{i1}+{0.5}^{2}\cdot{R}_{c1}\\&={0.5}^{2}\cdot 0\cdot {R}_{in}+{0.5}^{2}\cdot 2\cdot{R}_{n}\\&=0+{0.5}^{2}\cdot 2\cdot {R}_{n}\\&={0.5}^{2}\cdot 2\cdot {R}_{n}\end{aligned}$$
$$SN{R}_{1}=\frac{{Q}_{1}}{{R}_{1}}=\frac{{0.5}^{2}{Q}_{n}}{{0.5}^{2}\cdot 2\cdot {R}_{n}}=0.5\cdot \frac{{Q}_{n}}{{R}_{n}}=0.5\cdot SN{R}_{n}$$

Scenario 2: loses signal, loses noise, contralateral noise + 26 %

$${R}_{i2}=0\cdot {R}_{in}=0$$
$${R}_{c2}={1.26}^{2}\cdot {R}_{cn}={1.26}^{2}\cdot 2\cdot {R}_{n}$$
$${Q}_{2}={0.5}^{2}\cdot {Q}_{n}$$
$$\begin{aligned}{R}_{2}&={0.5}^{2}\cdot {R}_{i2}+{0.5}^{2}\cdot {R}_{c2}\\&={0.5}^{2}\cdot 0\cdot {R}_{in}+{0.5}^{2}\cdot {1.26}^{2}\cdot 2\cdot {R}_{n}\\&=0+{0.5}^{2}\cdot {1.26}^{2}\cdot 2\cdot {R}_{n}\\&={0.5}^{2}\cdot {1.26}^{2}\cdot 2\cdot {R}_{n}\end{aligned}$$
$$SN{R}_{2}=\frac{{Q}_{2}}{{R}_{2}}=\frac{{0.5}^{2}\cdot {Q}_{n}}{0.5\cdot {1.26}^{2}\cdot {R}_{n}}=\frac{0.5}{{1.26}^{2}}\cdot \frac{{Q}_{n}}{{R}_{n}}=\frac{0.5}{{1.26}^{2}}\cdot SN{R}_{n}$$

Scenario 3: loses signal, retains noise, no change in contralateral noise

$${R}_{i3}={R}_{in}=2\cdot {R}_{n}$$
$${R}_{c3}={R}_{cn}=2\cdot {R}_{n}$$
$${Q}_{3}={0.5}^{2}\cdot {Q}_{n}$$
$$\begin{aligned}{R}_{3}&={0.5}^{2}\cdot {R}_{i3}+{0.5}^{2}\cdot {R}_{c3}\\&={0.5}^{2}\cdot {R}_{in}+{0.5}^{2}\cdot {R}_{cn}\\&={0.5}^{2}\cdot 2\cdot {R}_{n}+{0.5}^{2}\cdot 2\cdot {R}_{n}\\&={R}_{n}\end{aligned}$$
$$SN{R}_{3}=\frac{{Q}_{3}}{{R}_{3}}=\frac{{0.5}^{2}\cdot {Q}_{n}}{{R}_{n}}={0.5}^{2}\frac{{Q}_{n}}{{R}_{n}}=0.25\cdot SN{R}_{n}$$

Scenario 4: lose signal, retain noise, contralateral noise + 26 %

$${R}_{i4}={R}_{in}=2{R}_{n}$$
$${R}_{c4}={1.26}^{2}{R}_{cn}={1.26}^{2}\cdot 2{R}_{n}$$
$${Q}_{4}={0.5}^{2}\cdot {Q}_{n}$$
$$\begin{aligned}{R}_{4}&={0.5}^{2}{R}_{i4}+{0.5}^{2}{R}_{c4}\\&={0.5}^{2}{R}_{in}+{0.5}^{2}\cdot {1.26}^{2}{R}_{cn}\\&={0.5}^{2}\cdot 2{R}_{n}+{0.5}^{2}\cdot {1.26}^{2}\cdot 2{R}_{n}\\&=0.5(1+{1.26}^{2}){R}_{n}\end{aligned}$$
$$\begin{aligned}SN{R}_{4}&={Q}_{4}{R}_{4}\\&={0.5}^{2}\cdot {Q}_{n}\cdot 0.5(1+{1.26}^{2}){R}_{n}\\&={0.5}^{2}\cdot 0.5(1+{1.26}^{2}){Q}_{n}{R}_{n}\\&=0.5\left(1+{1.26}^{2}\right)SN{R}_{n}\end{aligned}$$

Scenario 5: loses signal, retains noise, contralateral noise + 26 %, additional 32.8 % noise

$${R}_{i5}={R}_{in}=2\cdot {R}_{n}$$
$${R}_{c5}={1.26}^{2}\cdot {R}_{cn}={1.26}^{2}\cdot 2\cdot {R}_{n}$$
$${Q}_{5}={0.5}^{2}\cdot {Q}_{n}$$
$$\begin{aligned}{R}_{5}&={1.328}^{2}\cdot ({0.5}^{2}\cdot {R}_{i1}+{0.5}^{2}{R}_{c1})\\&={1.328}^{2}\cdot ({0.5}^{2}\cdot {R}_{in}+{0.5}^{2}\cdot {1.26}^{2}\cdot {R}_{cn})\\&={1.328}^{2}\cdot ({0.5}^{2}\cdot 2\cdot {R}_{n}+{0.5}^{2}\cdot {1.26}^{2}\cdot 2\cdot {R}_{n})\\&={1.328}^{2}\cdot (0.5\cdot \left(1+{1.26}^{2}\right){R}_{n})\end{aligned}$$
$$\begin{aligned}SN{R}_{5}&=\frac{{Q}_{5}}{{R}_{5}}\\&=\frac{{0.5}^{2}\cdot {Q}_{n}}{{1.328}^{2}\cdot 0.5\cdot \left(1+{1.26}^{2}\right)\cdot {R}_{n}}\\&=\frac{{0.5}^{2}}{{1.328}^{2}\cdot 0.5\cdot \left(1+{1.26}^{2}\right)}\cdot \frac{{Q}_{n}}{{R}_{n}}\\&=\frac{0.5}{{1.328}^{2}\left(1+{1.26}^{2}\right)}\cdot SN{R}_{n}\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhani, A., Lewis, R.F. & Karmali, F. How Peripheral Vestibular Damage Affects Velocity Storage: a Causative Explanation. JARO 23, 551–566 (2022). https://doi.org/10.1007/s10162-022-00853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00853-3

Keywords

Navigation