Skip to main content

Advertisement

Log in

Systemic Lipopolysaccharide Compromises the Blood-Labyrinth Barrier and Increases Entry of Serum Fluorescein into the Perilymph

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The blood vessels that supply the inner ear form a barrier between the blood and the inner ear fluids to control the exchange of solutes, protein, and water. This barrier, called the blood-labyrinth barrier (BLB) is analogous to the blood-brain barrier (BBB), which plays a critical role in limiting the entry of inflammatory and infectious agents into the central nervous system. We have developed an in vivo method to assess the functional integrity of the BLB by injecting sodium fluorescein into the systemic circulation of mice and measuring the amount of fluorescein that enters perilymph in live animals. In these experiments, perilymph was collected from control and experimental mice in sequential samples taken from the posterior semicircular canal approximately 30 min after systemic fluorescein administration. Perilymph fluorescein concentrations in control mice were compared with perilymph fluorescein concentrations after lipopolysaccharide (LPS) treatment (1 mg/kg IP daily for 2 days). The concentration of perilymphatic fluorescein, normalized to serum fluorescein, was significantly higher in LPS-treated mice compared to controls. In order to assess the contributions of perilymph and endolymph in our inner ear fluid samples, sodium ion concentration of the inner ear fluid was measured using ion-selective electrodes. The sampled fluid from the posterior semicircular canal demonstrated an average sodium concentration of 145 mM, consistent with perilymph. These experiments establish a novel technique to assess the functional integrity of the BLB using quantitative methods and to provide a comparison of the BLB to the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  • Awad AS (2006) Role of AT1 receptors in permeability of the blood-brain barrier in diabetic hypertensive rats. Vasc Pharmacol 45(3):141–147. doi:10.1016/j.vph.2006.04.004

    Article  CAS  Google Scholar 

  • Cardona AE, Li M, Liu L, Savarin C, Ransohoff RM (2008) Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol 84(3):587–594. doi:10.1189/jlb.1107763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77(1):120–127. doi:10.1128/IAI.01065-08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choo YB, Tabowitz D (1964) The formation and flow of the cochlear fluids. I. Studies with radioactive sodium (Na22). Ann Otol Rhinol Laryngol 73:92–100

    PubMed  CAS  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566. doi:10.1038/nature09513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Diamond MS, Klein RS (2004) West Nile virus: crossing the blood-brain barrier. Nat Med 10(12):1294–1295. doi:10.1038/nm1204-1294

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33(12):579–589. doi:10.1016/j.it.2012.07.004

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, Wendland MF, Vexler ZS (2012) Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci : Off J Soc Neurosci 32(28):9588–9600. doi:10.1523/JNEUROSCI.5977-11.2012

    Article  CAS  Google Scholar 

  • Fregni R, Poli A (1954) Convulsive state produced by various types of shock, conduct of three barriers (blood-aqueous, blood-labyrinthine fluids, and blood-liquor [spinal fluid]) with reference to some convulsive states. J Am Med Assoc; Arch Otolaryngol 60(2):149–153

    Article  CAS  Google Scholar 

  • Hahn H, Salt AN, Schumacher U, Plontke SK (2013) Gentamicin concentration gradients in scala tympani perilymph following systemic applications. Audiol Neuro-Otol 18(6):383–391. doi:10.1159/000355283

    Article  CAS  Google Scholar 

  • Hara A, Salt AN, Thalmann R (1989) Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid. Hear Res 42(2–3):265–271

    PubMed  CAS  Google Scholar 

  • He Z, Wang X, Wu Y, Jia J, Hu Y, Yang X, Li J, Fan M, Zhang L, Guo J, Leung MC (2014) Treadmill pre-training ameliorates brain edema in ischemic stroke via down-regulation of aquaporin-4: an MRI study in rats. PLoS One 9(1):e84602. doi:10.1371/journal.pone.0084602

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489(2):180–194

    Article  PubMed  Google Scholar 

  • Holman DW, Klein RS, Ransohoff RM (2011) The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 1812(2):220–230. doi:10.1016/j.bbadis.2010.07.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Inamura N, Salt AN (1992) Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments. Hear Res 61(1–2):12–18

    Article  PubMed  CAS  Google Scholar 

  • Jahnke K (1980) The fine structure of the cochlear plexus. Arch Otorhinolaryngol 228(3):155–161

    Article  PubMed  CAS  Google Scholar 

  • Jangula A, Murphy EJ (2013) Lipopolysaccharide-induced blood brain barrier permeability is enhanced by alpha-synuclein expression. Neurosci Lett 551:23–27. doi:10.1016/j.neulet.2013.06.058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Juhn SK, Rybak LP (1981) Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 91(5–6):529–534

    Article  PubMed  CAS  Google Scholar 

  • Juhn SK, Rybak LP, Fowlks WL (1982) Transport characteristics of the blood—perilymph barrier. Am J Otolaryngol 3(6):392–396

    Article  PubMed  CAS  Google Scholar 

  • Kastenbauer S, Klein M, Koedel U, Pfister HW (2001) Reactive nitrogen species contribute to blood–labyrinth barrier disruption in suppurative labyrinthitis complicating experimental pneumococcal meningitis in the rat. Brain Res 904(2):208–217

    Article  PubMed  CAS  Google Scholar 

  • Lustig S, Danenberg HD, Kafri Y, Kobiler D, Ben-Nathan D (1992) Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J Exp Med 176(3):707–712

    Article  PubMed  CAS  Google Scholar 

  • McCandless EE, Zhang B, Diamond MS, Klein RS (2008) CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis. Proc Natl Acad Sci U S A 105(32):11270–11275. doi:10.1073/pnas.0800898105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McGettrick AF, O'Neill LA (2010) Regulators of TLR4 signaling by endotoxins. Subcell Biochem 53:153–171. doi:10.1007/978-90-481-9078-2_7

    Article  PubMed  CAS  Google Scholar 

  • Nadeau S, Rivest S (2002) Endotoxemia prevents the cerebral inflammatory wave induced by intraparenchymal lipopolysaccharide injection: role of glucocorticoids and CD14. J Immunol 169(6):3370–3381

    Article  PubMed  CAS  Google Scholar 

  • Neng L, Zhang W, Hassan A, Zemla M, Kachelmeier A, Fridberger A, Auer M, Shi X (2013) Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear. Nat Protoc 8(4):709–720. doi:10.1038/nprot.2013.033

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y (2009) Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol 29(3):309–316. doi:10.1007/s10571-008-9322-x

    Article  PubMed  CAS  Google Scholar 

  • Rossner W, Tempel K (1966) Quantitative determination of the permeability of the so-called blood-brain barrier of Evans blue (T 1824). Med Pharmacol Exp Int J Exp Med 14(2):169–182

    PubMed  CAS  Google Scholar 

  • Salt AN, Stopp PE (1979) The effect of cerebrospinal fluid pressure on perilymphatic flow in the opened cochlea. Acta Otolaryngol 88(3–4):198–202

    Article  PubMed  CAS  Google Scholar 

  • Salt AN, Kellner C, Hale S (2003) Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hear Res 182(1–2):24–33

    Article  PubMed  Google Scholar 

  • Salt AN, Hale SA, Plonkte SK (2006) Perilymph sampling from the cochlear apex: a reliable method to obtain higher purity perilymph samples from scala tympani. J Neurosci Methods 153(1):121–129. doi:10.1016/j.jneumeth.2005.10.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salt AN, Hartsock JJ, Gill RM, Piu F, Plonkte SK (2012) Perilymph pharmacokinetics of markers and dexamethasone aplied and sampled at the lateral semi-circular canal. J Assoc Res Otolaryngology : JARO 13(6):771–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Santi P, Rapson I, Voie A (2008) Development of the mouse cochlea database (MCD). Hear Res 243(1–2):11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Santi PA, Johnson SB, Hillenbrand M, GrandPre PZ, Glass TJ, Leger JR (2009) Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. BioTech 46(4):287–294. doi:10.2144/000113087

    CAS  Google Scholar 

  • Sato E, Shick HE, Ransohoff RM, Hirose K (2010) Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. J Assoc Res Otolaryngology : JARO 11(2):223–234. doi:10.1007/s10162-009-0198-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheibe F, Haupt H (1985) Biochemical differences between perilymph, cerebrospinal fluid and blood plasma in the guinea pig. Hear Res 17(1):61–66

    Article  PubMed  CAS  Google Scholar 

  • Schnieder EA (1974) A contribution to the physiology of the perilymph. 1. The origins of perilymph. Ann Otol Rhinol Laryngol 83(1):76–83

    PubMed  CAS  Google Scholar 

  • Shi X (2010) Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res 342(1):21–30. doi:10.1007/s00441-010-1040-2

    Article  PubMed  Google Scholar 

  • Suzuki M, Kaga K (1999) Development of blood-labyrinth barrier in the semicircular canal ampulla of the rat. Hear Res 129(1–2):27–34

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Yamasoba T, Kaga K (1998) Development of the blood-labyrinth barrier in the rat. Hear Res 116(1–2):107–112

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Sankar R, Domer F (1981) Effects of acute hypertension on the extravasation of macromolecule in the temporal bone—the possible involvement of the blood-inner ear barrier. Arch Otorhinolaryngol 232(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Takeshita Y, Ransohoff RM (2012) Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev 248(1):228–239. doi:10.1111/j.1600-065X.2012.01127.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N, Obukhov AG, Vogel SM, Schraufnagel DE, Dietrich A, Birnbaumer L, Malik AB, Mehta D (2012) TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med 209(11):1953–1968. doi:10.1084/jem.20111355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thalmann I, Comegys TH, Liu SZ, Ito Z, Thalmann R (1992) Protein profiles of perilymph and endolymph of the guinea pig. Hear Res 63(1–2):37–42

    Article  PubMed  CAS  Google Scholar 

  • Thorne M, Salt AN, DeMott JE, Henson MM, Henson OW Jr, Gewalt SL (1999) Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109(10):1661–1668. doi:10.1097/00005537-199910000-00021

    Article  PubMed  CAS  Google Scholar 

  • Trune DR (1997) Cochlear immunoglobulin in the C3H/lpr mouse model for autoimmune hearing loss. Otolaryngology–Head Neck Surg : Off J Am Acad Otolaryngology-Head Neck Surg 117(5):504–508

    Article  CAS  Google Scholar 

  • Veszelka S, Urbanyi Z, Pazmany T, Nemeth L, Obal I, Dung NT, Abraham CS, Szabo G, Deli MA (2003) Human serum amyloid P component attenuates the bacterial lipopolysaccharide-induced increase in blood-brain barrier permeability in mice. Neurosci Lett 352(1):57–60

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Sun J, Goldstein H (2008) Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide. J Virol 82(15):7591–7600. doi:10.1128/JVI.00768-08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W, Deng M, Liu X, Ai W, Tang Q, Hu J (2011) TLR4 activation induces nontolerant inflammatory response in endothelial cells. Inflammation 34(6):509–518. doi:10.1007/s10753-010-9258-4

    Article  PubMed  CAS  Google Scholar 

  • Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36(2):156–164

    Article  PubMed  CAS  Google Scholar 

  • Wispelwey B, Lesse AJ, Hansen EJ, Scheld WM (1988) Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest 82(4):1339–1346. doi:10.1172/JCI113736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang W, Dai M, Fridberger A, Hassan A, Degagne J, Neng L, Zhang F, He W, Ren T, Trune D, Auer M, Shi X (2012) Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci U S A 109(26):10388–10393. doi:10.1073/pnas.1205210109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang F, Zhang J, Neng L, Shi X (2013) Characterization and inflammatory response of perivascular-resident macrophage-like melanocytes in the vestibular system. J Assoc Res Otolaryngology : JARO 14(5):635–643. doi:10.1007/s10162-013-0403-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P (2006) A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol 177(11):8103–8110

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Pyykko I, Counter SA, Klason T, Bretlau P, Bjelke B (2003) In vivo observation of dynamic perilymph formation using 4.7 T MRI with gadolinium as a tracer. Acta Otolaryngol 123(8):910–915

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to Ruth Gill for her fine work in analyzing the TSLIM data and segmenting the 3D structures to estimate fluid volumes. Thanks to Song-Zhe Li who provided care for the mice and performed LPS and saline pretreatment. Also, thank you to Kevin Ohlemiller for thoughtful critique of the experiments and the manuscript, and to Dorina Kallojieri for her assistance with the statistical analysis.

Conflict of Interest

None of the authors who have authored or provided materials for this work have a financial, personal, or other conflicting interest in the results of this research or publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Hirose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirose, K., Hartsock, J.J., Johnson, S. et al. Systemic Lipopolysaccharide Compromises the Blood-Labyrinth Barrier and Increases Entry of Serum Fluorescein into the Perilymph. JARO 15, 707–719 (2014). https://doi.org/10.1007/s10162-014-0476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0476-6

Keywords

Navigation