Skip to main content
Log in

Flubendiamide affects visual and locomotory activities of Drosophila melanogaster for three successive generations (P, F1 and F2)

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

Flubendiamide is widely used in agricultural fields to exterminate a broad spectrum of pests (lepidopteran insects) by disrupting their muscle function. The main objective of this study was to find the effects of flubendiamide on a non-target organism, Drosophila melanogaster (dipteran insect). In the present study, different sub-lethal concentrations of Flubendiamide caused a significant (P < 0.05) decrease in acetylcholinesterase activity and increase in cytochrome P450 activity in adult D. melanogaster. Phototaxis and climbing behaviours were found to significantly (P < 0.05) alter in exposed flies. The observed alteration in phototaxis and climbing behaviours were not restricted to P generation, but were found to be transmitted to subsequent generations (F1 and F2 generation) that had never been directly exposed to the test chemical during their life time. It is only their predecessors (P generation) who have been affronted with different concentrations of Flubendiamide. Humans and Drosophilids share almost 60% genomic similarity and 75% disease gene resemblance. Moreover, most of the circuits governing the behaviours studied involve the inhibition and excitation of neurotransmitters, which are conserved in humans and flies. Thus, the present findings suggest that chronic flubendiamide exposure might induce alteration in neurotransmission leading to discrepancy in the behavioural responses (vision and flight) in other beneficial insects and insect-dependent organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aurosman Pappus S, Ekka B, Sahu S, Sabat D, Dash P, Mishra M (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res 19(136):1–16. https://doi.org/10.1007/s11051-017-3824-8

    Article  CAS  Google Scholar 

  • Ayed-Boussema I, Rjiba K, Mnasri N, Moussa A, Bacha H (2012) Genotoxicity evaluation of dimethoate to experimental mice by micronucleus, chromosome aberration tests, and comet assay. Int J Toxicol 31:78–85. https://doi.org/10.1177/1091581811423981

    Article  PubMed  CAS  Google Scholar 

  • Bahri SM, Yang X, Chia W (1997) The Drosophila bifocal gene encodes a novel protein which co localizes with actin and is necessary for photoreceptor morphogenesis. Mol Cell Biol 17:5521–5529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA 106:5731–5736

    Article  PubMed  PubMed Central  Google Scholar 

  • Desroches CE, Busto M, Riedl CAL, Mackay TFC, Sokolowski MB (2010) Quantitative trait locus mapping of gravitaxis behaviour in Drosophila melanogaster. Genet Res Camb 92:167–174

    Article  PubMed  CAS  Google Scholar 

  • Dickinson M (2006) Insect flight. Curr Biol 16:309–314

    Article  CAS  Google Scholar 

  • Dutta M, Sarkar S, Roy S (2014) Sodium fluoride induced alteration in lifecycle parameters and compound eye morphology of Drosophila melanogaster and trans-generational transmission of the altered eye architecture. JIARM 2:247–259

    Google Scholar 

  • Dutta M, Rajak P, Khatun S, Roy S (2017) Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure. Chemosphere 166:255–266

    Article  PubMed  CAS  Google Scholar 

  • Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, Schulte T, Funke C, Fischer R, Masaki T, Yasokawa N, Tonishi M et al (2006) Phthalic acid diamides activate ryanodine sensitive Ca2+ release channels in insect. Cell Calcium 39:21–33

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres VR, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Government of India, Ministry of Agriculture, Department of Agriculture and Cooperation (2009) Directorate of Plant Protection, Quarantine & Storage, Central Insecticide Board and Registration Committee, N.H. IV, Faridabad-121 001, Registered under the Insecticides Act, 1968. http://www.cibrc.nic.in/mupi.pdf. Accessed 1 May 2017

  • Grover D, Ford D, Brown C, Hoe N, Erdem A, Tavare S, Tower J (2009) Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. https://doi.org/10.1371/journal.pone.0007580

    Article  Google Scholar 

  • Hamada FN, Rosenzweig M, Kang K et al (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardie RC, Franze K (2012) Photomechanical responses in Drosophila photoreceptors. Science 338:260–263

    Article  PubMed  CAS  Google Scholar 

  • Howlader G, Sharma VK (2006) Circadian regulation of egg-laying behavior in fruit flies Drosophila melanogaster. J Insect Physiol 52:779–785

    Article  PubMed  CAS  Google Scholar 

  • http://www.fao.org/fileadmin/templates/agphome/documents/PestsPesticides/JMPR/Evaluation10/Flubendiamide.pdf. Accessed 28 Jan 2017

  • Hutchins JB, Bernanke JM, Jefferson VE (1995) Acetylcholinesterase in the developing ferret retina. Exp Eye Res 60:113–125

    Article  PubMed  CAS  Google Scholar 

  • Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2007) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64:65–73

    Article  CAS  Google Scholar 

  • Kaizer RR, Correa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Klotz AV, Stegeman JJ, Walsh C (1984) An alternative 7-ethoxyresorufin O-deethylase activity assay: a continuous visible spectrophotometric method for measurement of cytochrome P-450 monooxygenase activity. Anal Biochem 140:138–145

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Ara G, Afzal M, Siddique YH (2011) Effect of methyl methanesulfonate on hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Interdiscip Toxicol 4:159–165. https://doi.org/10.2478/v10102-011-0025-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakhotia SC, Mukherjee T (1980) Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide on the heat shock induced puffing activity. Chromosoma (Berl) 81:125–136

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Wang R, Yin C, Dong Q, Hing H, Kim C, Welsh MJ (2007) Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450:294–298

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Measurement of protein with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  • Lümmen P, Ebbinghaus-Kintscher U, Funke C, Fischer R, Masaki T, Yasokawa N, Tohnishi M (2007) Phthalic acid diamides activate insect ryanodine receptors. In: Lyga JW, Theodiridis G (eds) Synthesis and chemistry of agrochemicals VII, AC symposium series 948, American Chemical Society, Washington, DC, USA

  • Martinou AF, Seraphides N, Stavrinides NC (2014) Lethal and behavioural effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 96:167–173

    Article  PubMed  CAS  Google Scholar 

  • Meunier N, Belgacem YH, Martin JR (2007) Regulation of feeding behavior and locomotor activity by take out in Drosophila. J Exp Biol 210:1424–1434

    Article  PubMed  Google Scholar 

  • Miller MS, Lekkas P, Braddock JM, Farman GP, Ballif BA, Irving TC, Maughan DW, Vigoreaux JO (2008) Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J 95:2391–2401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minton EA, Khale LR (2014) Belief systems, religion and behavioral economics. Business Expert Press LLC, New York

    Google Scholar 

  • Mitchell E, Klein SL, Argyropoulos KV, Sharma A, Chan RB, Toth JG, Barboza L, Bavley C, Bortolozzi A, Chen Q, Liu B, Ingenito J, Mark W, Dudakov J, Gross S, Paolo GD, Artigas F, Brink MVD, Toth M (2016) Behavioural traits propagate across generations via segregated iterative-somatic and gametic epigenetic mechanisms. Nat Commun. https://doi.org/10.1038/ncomms11492

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay I, Siddique HR, Bajpai VK, Saxena DK, KarChoudhuri D (2006) Synthetic pyrethroid cypermethrin induced damage in reproductive tissue of Drosophila melanogaster: hsp70 as a marker of cellular damage. Arch Environ Contam Toxicol 51:673–680

    Article  PubMed  CAS  Google Scholar 

  • Nishimatsu T, Hirooka T, Kodama H, Tonishi M, Seo S (2005) Flubendiamide a new insecticide for controlling lepidopterous pests. In: BCPC International Congress: CropScience and Technology, 5764. British Crop Protection Council, Glasgow

  • Nishinokubi I, Shimoda M, Ishida N (2006) Mating rhythms of Drosophila: rescue of tim01 mutants by D. ananassae timeless. J Circadian Rhythms 4:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palladino MJ, Hadley TJ, Ganetzky B (2002) Temperature sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila. Genetics 161:1197–1208

    PubMed  PubMed Central  Google Scholar 

  • Penner N, Woodward C, Prakash C (2012) Drug metabolizing enzymes and biotransformation reactions. In: Zhang D, Surapaneni S (eds) ADME-enabling technologies in drug design and development, 1st edn. Wiley, Austin. http://onlinelibrary.wiley.com/doi/10.1002/9781118180778.app1/pdf

  • Petrulis JR, Chen G, Benn S, La Marre J, Bunce NJ (2001) Application of the ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic compounds. Environ Toxicol 16:177–184

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo R, Demontis F, Perrimon N, Goldberg AL (2013) Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn 243(2):201–215. https://doi.org/10.1002/dvdy.24036

    Article  PubMed  PubMed Central  Google Scholar 

  • Podder S, Akbari S, Roy S (2012) Cryolite induced morphological change in the compound eye of Drosophila melanogaster. Fluoride 45:58–64

    CAS  Google Scholar 

  • Rajak P, Dutta M, Khatun S, Mandi M, Roy S (2017) Exploring hazards of acute exposure of Acephate in Drosophila melanogaster and search for l-ascorbic acid mediated defense in it. J Hazard Mater 321:690–702

    Article  PubMed  CAS  Google Scholar 

  • Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83. https://doi.org/10.1016/j.ntt.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  • Rogilds A, Andersen DH, Pertoldi C, Dimitrov K, Loeschcke V (2005) Maternal and grandmaternal age effects on developmental instability and wing size in parthenogenetic Drosophila mercatorum. Biogerontology 6:61–69

    Article  PubMed  Google Scholar 

  • Sarkar S, Roy S (2017a) A mini review on heat shock proteins (HSPs): special emphasis on heat shock protein70 (HSP70). B N Seal J Sci 9(1):130–139

    Google Scholar 

  • Sarkar S, Roy S (2017b) Monitoring the effects of a lepidopteran insecticide, flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster. Environ Monit Assess 189:557. https://doi.org/10.1007/s10661-0176287-6

    Article  PubMed  Google Scholar 

  • Sarkar S, Roy S (2017c) Flubendiamide inflicts tissue damage and alters detoxification status in non-target dipteran insect, Drosophila melanogaster. Drosoph Inf Serv 100:49–54

    Google Scholar 

  • Sarkar S, Roy S (2017d) Flubendiamide induces trans-generational compound eye alterations in Drosophila melanogaster. Interdiscip Toxicol 10(4):142–147

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Dutta M, Roy S (2015a) Potential toxicity of flubendiamide in Drosophila melanogaster and associated structural alterations of its compound eye. Toxicol Environ Chem 96(7):1075–1087. https://doi.org/10.1080/02772248.2014.997986

    Article  CAS  Google Scholar 

  • Sarkar S, Podder S, Roy S (2015b) Flubendiamide-induced HSP70 expression in transgenic Drosophila melanogaster (hsp70-lacZ). Curr Sci 108(11):2044–2050

    Google Scholar 

  • Sarkar S, Khatun S, Dutta M, Roy S (2017) Trans-generational transmission of altered phenotype resulting from flubendiamide-induced changes in apoptosis in larval imaginal discs of Drosophila melanogaster. Environ Toxicol Pharmacol 56:350–360. https://doi.org/10.1016/j.etap.2017.11.001

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Mishra M, Shukla AK, Kumar R, Abdin MZ, Chowdhuri DK (2012) Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster. J Hazard Mater 221–222:275–287

    Article  PubMed  CAS  Google Scholar 

  • Simon AF, Shih C, Mack A, Benzer S (2003) Steroid control of longevity in Drosophila melanogaster. Science 299:1407–1410

    Article  PubMed  CAS  Google Scholar 

  • Spittle B (1994) Psychopharmacology of fluoride: a review. Int Clin Psychopharmacol 9:79–82

    Article  PubMed  CAS  Google Scholar 

  • Sternweis PC, Gilman AG (1982) Aluminium: a requirement for activation of regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79:4888–4891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szebenyi AL (1996) Cleaning behavior in Drosophila melanogaster. Anim Behav 17:641–651

    Article  Google Scholar 

  • Terçariol PRG, Godinho AF (2011) Behavioral effects of acute exposure to the insecticide fipronil. Pest Biochem Physiol 99:221–225

    Article  CAS  Google Scholar 

  • Tohnishi M, Nakao H, Furuya T, Seo A, Kodama H, Tsubata K, Fujioka S, Kodama H, Hirooka T, Nishimatsu T (2005) Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. J Pestic Sci 30:354–360

    Article  CAS  Google Scholar 

  • Vang LL, Medvedev AV, Adler J (2012) Simple way to measure behavioral responses of Drosophila to stimuli and use of these methods to characterize a novel mutant. PLoS ONE 7(1):1–11. https://doi.org/10.1371/journal.pone.0037495

    Article  CAS  Google Scholar 

  • Vrontou E, Nilsen SP, Demir E, Kravitz EA, Dickson BJ (2006) Fruitless regulates aggression and dominance in Drosophila. Nat Neurosci 9:1469–1471

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Xia T, Ran P, Bai Y, Yang K, Chen X (2002) Effects of selenium and fluoride on apoptosis and lipid peroxidation in human hepatocytes. Zhonghuayu Fang yixuezazhi Chi J Prev Med 36:235–238

    CAS  Google Scholar 

  • Wolfgang WJ, Forte MA (1989) Expression of acetylcholinesterase during visual system development in Drosophila. Dev Biol 131:321–330

    Article  PubMed  CAS  Google Scholar 

  • Yiamouyiannis J (1983) Fluoride the aging factor: How to recognize and avoid the devastating effects of fluoride, 1st edn. Magdalen Books

  • Zar JH (1999) Biostatistical analysis. Pearson Education Singapore Pte. Ltd., New Delhi, p 663

    Google Scholar 

  • Zhang M, Wang A, Xia T, He P (2008) Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-κβ in primary cultured rat hippocampal neurons. Toxicol Lett 179:1–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Head, DST-FIST, and UGC-DRS sponsored Department of Zoology, The University of Burdwan (BU) for providing the infrastructural facilities during the work. The special help received from Prof Abhijit Mazumdar, BU during insect culture. Dr A. Barik and Dr. G. Aditya, BU, are thankfully acknowledged for their kind help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumedha Roy.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Roy, A. & Roy, S. Flubendiamide affects visual and locomotory activities of Drosophila melanogaster for three successive generations (P, F1 and F2). Invert Neurosci 18, 6 (2018). https://doi.org/10.1007/s10158-018-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-018-0210-x

Keywords

Profiles

  1. Saurabh Sarkar