Skip to main content

Advertisement

Log in

Intimal growth on the luminal surface of arteriovenous grafts in rats

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Endothelial cells are known to grow on the luminal surface of arteriovenous grafts (AVGs) used in hemodialysis. Although endothelial cells are important for preventing infection, a detailed growth of endothelial cells in AVGs is unknown. This study sought to create a simpler animal model of AVGs and to investigate how endothelial cells form on the luminal surface.

Methods

Polyethylene grafts were placed between the cervical artery and vein of Wistar rats. The grafts were removed at 6 h, 24 h, 3 days, or 7 days after placement. The luminal surface was observed under optical and polarizing microscopy and stained with endothelial cell markers (LEL, CD31), the progenitor cell marker CD34, and the macrophage marker ED-1.

Results

Microscopy demonstrated many diffuse vascular endothelial cells on the luminal surface of AVGs after placement. While there was no difference in the number of LEL-positive cells between the arterial side (AS) and venous side (VS) at 6 h or 7 days, there were significantly more of these cells on the VS at both 24 h and 3 days (p < 0.05). Analysis at 24 h showed some CD31-positive cells and few CD34-positive cells.

Conclusions

This was the first study to use a simple rat model of AVG placement. Endothelial cell formation was initially more active on the VS than on the AS, but these cells subsequently increased in number across the luminal surface. Future clinical studies might contribute clinically by confirming whether AS versus VS puncture results in different infection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  1. Minga TE, Flanagan KH, Allon M. Clinical consequences of infected arteriovenous grafts in hemodialysis patients. Am J Kidney Dis. 2001;38(5):975–8.

    Article  CAS  PubMed  Google Scholar 

  2. Satinderjit L, Issac N, Joseph C, et al. Incidence and risk factors of sepsis in hemodialysis patients in the United States. J Vasc Surg. 2021;73(3):1016–21.

    Article  Google Scholar 

  3. Schild AF, Simon S, Prieto J, et al. Single-center review of infections associated with 1574 consecutive vascular access procedures. Vasc Endovascular Surg. 2003;37(1):27–31.

    Article  PubMed  Google Scholar 

  4. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol. 2006;17(4):1112–27.

    Article  PubMed  Google Scholar 

  5. Yau JW, Teoh H, Subodh V. Endothelial cell control of thrombosis. BMC Cardiovase Disord. 2015;15:130.

    Article  Google Scholar 

  6. Shi CS, Shi GY, Hisao SM, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112:3661–2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daigo K, Takamatsu Y, Hamakubo T. The protective effect against extracellular histones afforded by long-pentraxin PTX3 as a regulator of NETs. Front Immunol. 2016;7:344.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roy-Chaudhury P, Kelly BS, Miller MA, et al. Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. Kidey Int. 2001;59:2325–34.

    Article  CAS  Google Scholar 

  9. Debbage PL, Sölder E, Seidl S, et al. Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels. Histochem Cell Biol. 2001;116(4):349–59.

    Article  CAS  PubMed  Google Scholar 

  10. Newman PJ, Berndt MC, Gorski J, et al. PECAM-1(CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247:1219–22.

    Article  CAS  PubMed  Google Scholar 

  11. Fina L, Molgaard HV, Robertson D, et al. Expression of the CD34 gene in vascular endothelial cells. Blood. 1990;75:2417–26.

    Article  CAS  PubMed  Google Scholar 

  12. Dijkstra CD, Dopp EA, Joling P, et al. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985;54:589–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Okoshi T. New concept of microporous structure in small diameter vascular prostheses. Artif Organs. 1995;18:27.

    Article  Google Scholar 

  14. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362–7.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya V, Shi Q, Ishida A, et al. Administration of granulocyte colony-stimulating factor enhances endothelialization and microvessel formation in small-caliber syndthetic vascular grafts. J Vascular Surgery. 2000;32(1):116–23.

    Article  CAS  Google Scholar 

  16. Florey HW, Greer JJ, Kiser J, et al. The development of the pseudointima lining fabric grafts of the aorta. Br J Exp Pathol. 1962;43:655.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Peter HL, Chris KJ, Jennifer KP, et al. Transluminal stent graft repair with Wallgraft endoprosthesis in a porcine arteriovenous graft pseudoaneurysm model. J Vasc Surg. 2003;37(1):175–81.

    Article  Google Scholar 

  18. Kwon SH, Li L, He Y, et al. Prevention venus neointimal hyperplasia by a multi-target receptor tyrosine kinase inhibitor. J Vasc Res. 2015;52(4):244–56.

    Article  CAS  PubMed  Google Scholar 

  19. Rotmans JI, Pattynama PM, Verhagen HJ, et al. Sirolimus-eluting stents to abolish intimal hyperplasia and improve flow in porcine arteriovenous grafts: a 4-week follow-up study. Circulation. 2005;111(12):1537–42.

    Article  CAS  PubMed  Google Scholar 

  20. Zeigin E, Chalajour F, Gehling UM, et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–51.

    Article  Google Scholar 

  21. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    Article  CAS  PubMed  Google Scholar 

  22. Berger K, Sauvage LR, Rao AM, et al. Healing of arterial prosthesis in man: its incompleteness. Ann Surg. 1972;175:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  24. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex-vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000;97:3422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000;87:728–30.

    Article  CAS  PubMed  Google Scholar 

  27. Kipshidze N, Dangas G, Tsapenko M, et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol. 2004;44:733–9.

    CAS  PubMed  Google Scholar 

  28. Bhattacharya V, McSweeney PA, Shi Q, et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood. 2000;95:581–5.

    Article  CAS  PubMed  Google Scholar 

  29. Peichew M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.

    Article  Google Scholar 

  30. Rafii S, Oz MC, Seldomridge JA, et al. Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices. Ann Thorac Surg. 1995;60:1627.

    Article  CAS  PubMed  Google Scholar 

  31. Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53:502–14.

    Article  CAS  PubMed  Google Scholar 

  32. Girgis RE, Rosman H, del Busto R, et al. Porcine bioprosthetic aortic valve endocarditis with ring abscess and aortic stenosis. Henry Ford Hosp Med J. 1991;39:123–5.

    CAS  PubMed  Google Scholar 

  33. Kim SM, Min SK, Ahn S, et al. How to treat arteriovenous graft infection: total versus partial graft excision. J Vasc Access. 2018;19(2):125–30.

    Article  PubMed  Google Scholar 

  34. Ryan SV, Calligaro KD, Scharff J, et al. Management of infected prosthetic dialysis arteriovenous grafts. J Vasc Surg. 2004;39:73–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoyuki Hatayama or Yasuhiko Ito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 449 KB)

Supplementary file2 (MP4 101885 KB)

Supplementary file3 (MP4 54419 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, S., Hatayama, N., Miyamoto, K. et al. Intimal growth on the luminal surface of arteriovenous grafts in rats. Clin Exp Nephrol 27, 402–410 (2023). https://doi.org/10.1007/s10157-023-02320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-023-02320-6

Keywords

Navigation