Skip to main content

Advertisement

Log in

Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2

  • Special Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, “Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition” was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of “Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition” as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bence Jones H (1847) Chemical pathology. Lancet 2:88

    Article  Google Scholar 

  2. Abelev GI, Perove SD, Khramkova NI et al (1963) Production of embryonal alpha-globin by transplantable mouse hepatoma. Transplantation 1:174–180

    Article  CAS  PubMed  Google Scholar 

  3. Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122(3):467–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jeyakumar A, Younis T (2012) Trastuzumab for HER2-positive metastatic breast cancer: clinical and economic considerations. Clin Med Insights Oncol 6:179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohen P, Cross D, Jänne PA (2021) Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov 20(7):551–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng H, Liu H, Du Q et al (2021) Efficacy and safety of domestic and imported gefitinib in patients with advanced non-small cell lung cancer. Ann Palliat Med 10(1):10–15

    Article  PubMed  Google Scholar 

  7. Japan Society for Molecular Marker Research (ed) (2016) Molecular tumor marker guidelines first edition (in Japanese)

  8. Japan Society for Molecular Marker Research (ed) (2021) Molecular tumor marker guidelines, 2nd ed. (in Japanese)

  9. Kikuchi Y, Shimada H, Hatanaka Y et al (2023) Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol. https://doi.org/10.1007/s10147-023-02430-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Minds clinical practice guideline development manual 2020 ver. 3.0. https://minds.jcqhc.or.jp/s/manual_2020_3_0

  11. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  12. Louis DN, Wesseling P, Paulus W et al (2018) cIMPACT-NOW update 1: not otherwise specified (NOS) and not elsewhere classified (NEC). Acta Neuropathol 135:481–484

    Article  PubMed  Google Scholar 

  13. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    Article  CAS  PubMed  Google Scholar 

  14. Horbinski C, Ligon KL, Brastianos P et al (2019) The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro Oncol 21:1498–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kristensen BW, Priesterbach-Ackley LP, Petersen JK et al (2019) Molecular pathology of tumors of the central nervous system. Ann Oncol 30:1265–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lassaletta A, Zapotocky M, Mistry M et al (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35:2934–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  19. Shirahata M, Ono T, Stichel D et al (2018) Novel, improved grading system (s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136:153–166

    Article  CAS  PubMed  Google Scholar 

  20. Brat DJ, Aldape K, Colman H et al (2020) cIMPACT- NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brat DJ, Aldape K, Colman H et al (2018) cIMPACT- NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV.” Acta Neuropathol 136:805–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arita H, Yamasaki K, Matsushita Y et al (2016) A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simon M, Hosen I, Gousias K et al (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17:45–52

    Article  CAS  PubMed  Google Scholar 

  24. Umehara T, Arita H, Yoshioka E et al (2019) Distribution differences in prognostic copy number alteration profiles in IDH-wild-type glioblastoma cause survival discrepancies across cohorts. Acta Neuropathol Commun 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roger S, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  Google Scholar 

  26. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  27. Perry JR, Laperriere N, O’Callaghan CJ et al (2017) Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 376:1027–1037

    Article  CAS  PubMed  Google Scholar 

  28. Wick W, Platten M, Meisner C et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13:707–715

    Article  CAS  PubMed  Google Scholar 

  29. Bouffet E, Hansford JR, Garrè ML et al (2023) Dabrafenib plus trametinib in pediatric glioma with BRAF V600 mutations. N Engl J Med 389:1108–1120

    Article  CAS  PubMed  Google Scholar 

  30. Hargrave DR, Terashima K, Hara J et al (2023) Phase II trial of dabrafenib plus trametinib in relapsed/refractory BRAF V600-mutant pediatric high-grade glioma. J Clin Oncol 41:5174–5183

    Article  CAS  PubMed  Google Scholar 

  31. Paz DE, Young CK, Chien HT et al (2019) Prognostic roles of SCC antigen, CRP and CYFRA 21–1 in oral cavity squamous cell carcinoma. Anticancer Res 39:2025–2033

    Article  PubMed  Google Scholar 

  32. Yasumatsu R, Nakano T, Hashimoto K et al (2019) The clinical value of serum squamous cell carcinoma antigens 1 and 2 in head and neck squamous cell carcinoma. Auris Nasus Larynx 46:135–140

    Article  PubMed  Google Scholar 

  33. Mrochem-Kwarciak J, Rutkowski T, Wygoda A et al (2018) Early diagnosis of radiotherapy failure for patients with head and neck cancer: the role of biochemical markers. Tumori 104:273–279

    Article  CAS  PubMed  Google Scholar 

  34. Jantharapattana K, Kotamnivates T, Hirunpat S et al (2018) Correlation between serum squamous cell carcinoma antigen level and tumor volume in head and neck cancer. ORL J Otorhinolaryngol Relat Spec 80:284–289

    Article  CAS  PubMed  Google Scholar 

  35. Barak V, Meirovitz A, Leibovici V et al (2015) The diagnostic and prognostic value of tumor markers (CEA, SCC, CYFRA 21–1, TPS) in head and neck cancer patients. Anticancer Res 35:5519–5524

    CAS  PubMed  Google Scholar 

  36. Imai R, Takenaka Y, Yasui T et al (2015) Prognostic significance of serum squamous cell carcinoma antigen in patients with head and neck cancer. Acta Otolaryngol 135:295–301

    Article  CAS  PubMed  Google Scholar 

  37. Huang SF, Wei FC, Liao CT et al (2012) Risk stratification in oral cavity squamous cell carcinoma by preoperative CRP and SCC antigen levels. Ann Surg Oncol 19:3856–3864

    Article  PubMed  Google Scholar 

  38. Lin WH, Chen IH, Wei FC et al (2011) Clinical significance of preoperative squamous cell carcinoma antigen in oral-cavity squamous cell carcinoma. Laryngoscope 121:971–977

    Article  PubMed  Google Scholar 

  39. Eleftheriadou A, Chalastras T, Ferekidou E et al (2006) Clinical effectiveness of tumor markers in squamous cell carcinoma of the larynx. Anticancer Res 26:2493–2497

    CAS  PubMed  Google Scholar 

  40. Kandiloros D, Eleftheriadou A, Chalastras T et al (2006) Prospective study of a panel of tumor markers as prognostic factors in patients with squamous cell carcinoma of head and neck. Med Oncol 23:463–470

    Article  CAS  PubMed  Google Scholar 

  41. Büntzel J, Hornig A, Glatzel M et al (2005) Tumor markers and lymphatic metastasis in head and neck cancer patients. Anticancer Res 25:1539–1542

    PubMed  Google Scholar 

  42. Banal A, Hacene K, Berthelot-Ruff E et al (2001) Comparison of Cyfra 21–1 and SCC assays in head and neck tumours. Tumour Biol 22:27–33

    Article  CAS  PubMed  Google Scholar 

  43. Lee JK, Hsieh JF, Tsai SC et al (2001) Comparison of CYFRA 21–1 and squamous cell carcinoma antigen in detecting nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol 110:775–778

    Article  CAS  PubMed  Google Scholar 

  44. Kimura Y, Fujieda S, Takabayashi T et al (2000) Conventional tumor markers are prognostic indicators in patients with head and neck squamous cell carcinoma. Cancer Lett 155:163–168

    Article  CAS  PubMed  Google Scholar 

  45. Rosati G, Riccardi F, Tucci A (2000) Use of tumor markers in the management of head and neck cancer. Int J Biol Mark 15:179–218

    Article  CAS  Google Scholar 

  46. Travassos DC, Fernandes D, Massucato EMS et al (2018) Squamous cell carcinoma antigen as a prognostic marker and its correlation with clinicopathological features in head and neck squamous cell carcinoma: systematic review and meta-analysis. J Oral Pathol Med 47:3–10

    Article  CAS  PubMed  Google Scholar 

  47. Rudhart SA, Schultz JD, Gehrt F et al (2019) CYFRA 21–1 a suitable tumor marker in patients with head and neck cutaneous squamous cell carcinoma? Eur Arch Otorhinolaryngol 276:3467–3475

    Article  PubMed  Google Scholar 

  48. Hsu YP, Hsieh CH, Chien HT et al (2015) Serum markers of CYFRA 21–1 and C-reactive proteins in oral squamous cell carcinoma. World J Surg Oncol 13:253

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wei Z, Zeng X, Xu J et al (2014) Prognostic value of the pretreatment serum level of cytokeratin fraction 21–1 in undifferentiated nasopharyngeal carcinoma: a study of 332 cases. Head Neck 36:71–76

    Article  PubMed  Google Scholar 

  50. Alkotyfan K, Wiegand S, Müller HH et al (2010) Cyfra21-1 as a tumor marker for follow-up of patients with squamous cell carcinoma of the oropharynx. Anticancer Res 30:2291–2296

    CAS  PubMed  Google Scholar 

  51. Al-Shagahin H, Alkotyfan K, Müller HH et al (2009) Cyfra 21–1 as a serum tumor marker for follow-up of patients with laryngeal and hypopharyngeal squamous cell carcinoma. Anticancer Res 29:3421–3425

    CAS  PubMed  Google Scholar 

  52. Zhong LP, Zhu HG, Zhang CP et al (2007) Detection of serum Cyfra 21–1 in patients with primary oral squamous cell carcinoma. Int J Oral Maxillofac Surg 36:230–234

    Article  PubMed  Google Scholar 

  53. Céruse P, Rabilloud M, Charrié A et al (2005) Study of cyfra 21–1, a tumor marker, in head and neck squamous cell carcinoma. Ann Otol Rhinol Laryngol 114:768–777

    Article  PubMed  Google Scholar 

  54. Ma BB, Leungm SF, Hui EP et al (2004) Prospective validation of serum CYFRA 21–1, beta-2-microglobulin, and ferritin levels as prognostic markers in patients with nonmetastatic nasopharyngeal carcinoma undergoing radiotherapy. Cancer 101:776–781

    Article  CAS  PubMed  Google Scholar 

  55. Deng YF, Chen P, Lin YZ et al (2003) Analytical and clinical evaluation of CYFRA 21–1 by electrochemiluminescent immunoassay in head and neck squamous cell carcinoma. J Laryngol Otol 117:190–194

    Article  PubMed  Google Scholar 

  56. Tai CJ, Liu FY, Liang JA et al (2002) Comparison of CYFRA 21–1 and tissue polypeptide specific antigen (TPS) for detecting nasopharyngeal carcinoma. Anticancer Res 22:3793–3796

    PubMed  Google Scholar 

  57. Doweck I, Barak M, Uri N et al (2000) The prognostic value of the tumour marker Cyfra 21–1 in carcinoma of head and neck and its role in early detection of recurrent disease. Br J Cancer 83:1696–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maass JD, Hoffmann-Fazel A, Goeroegh T et al (2000) Cyfra 21–1: a serological help for detection of distant metastases in head and neck cancer. Anticancer Res 20:2241–2243

    CAS  PubMed  Google Scholar 

  59. Niemann AM, Goeroegh T, Gottschlich S et al (1997) Cut-off value determination of CYFRA 21–1 for squamous cell carcinomas of the head and neck (SCCHN). Anticancer Res 17:2859–2860

    CAS  PubMed  Google Scholar 

  60. Liu L, Xie W, Xue P et al (2019) Diagnostic accuracy and prognostic applications of CYFRA 21–1 in head and neck cancer: A systematic review and meta- analysis. PLoS ONE 9(14):e0216561

    Article  Google Scholar 

  61. Wang YX, Hu D, Yan X (2013) Diagnostic accuracy of Cyfra 21–1 for head and neck squamous cell carcinoma: a meta-analysis. Eur Rev Med Pharmacol Sci 17:2383–3238

    PubMed  Google Scholar 

  62. Chen CH, Tsai TL, Yang YS et al (2007) Studies of the serum HER-2/neu and squamous cell carcinoma- related antigen expression in patients with oral squamous cell carcinoma. J Oral Pathol Med 36:83–87

    Article  CAS  PubMed  Google Scholar 

  63. Pradier O, Hille A, Schmiberger H et al (2002) Monitoring of therapy in head and neck patients during the radiotherapy by measurement of Cyfra 21–1. Cancer Radiother 6:15–21

    Article  CAS  PubMed  Google Scholar 

  64. Micke O, Bruns F, Schäfer U et al (2003) The clinical value of squamous cell carcinoma antigen in patients irradiated for locally advanced cancer of the head and neck. Anticancer Res 23:907–911

    CAS  PubMed  Google Scholar 

  65. Hama T, Tokumaru Y, Fujii M et al (2014) Prevalence of human papillomavirus in oropharyngeal cancer: a multicenter study in Japan. Oncology 87:173–182

    Article  PubMed  Google Scholar 

  66. El-Naggar AK, Westra WH (2012) p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 34:459–461

    Article  PubMed  Google Scholar 

  67. American Joint Committee on Cancer (2012) AJCC cancer staging manual, 8th edn. Springer, Berlin

    Google Scholar 

  68. Japanese Society for Head and Neck Cancer (ed) (2019) General rules for clinical studies on head and neck cancer (the 6th ed., Revised version) (in Japanese)

  69. Ahmadi N, Chan M, Huo YR et al (2019) Survival outcome of tonsillar squamous cell carcinoma (TSCC) in the context of human papillomavirus (HPV): a systematic review and meta-analysis. Surgeon 17:6–14

    Article  PubMed  Google Scholar 

  70. Patel RR, Ludmir EB, Augustyn A et al (2020) De-intensification of therapy in human papillomavirus associated oropharyngeal cancer: a systematic review of prospective trials. Oral Oncol 103:104608

    Article  CAS  PubMed  Google Scholar 

  71. Khambata-Ford S, Garrett CR, Meropol NJ et al (2007) Expression of epiregulin and amphiregulin and K-RAS mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25:3230–3237

    Article  CAS  PubMed  Google Scholar 

  72. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-RAS mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  CAS  PubMed  Google Scholar 

  73. Weber A, Langhanki L, Sommerer F et al (2003) Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene 22:4757–4759

    Article  CAS  PubMed  Google Scholar 

  74. Ferris RL, Blumenschein G Jr, Fayette J et al (2018) Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 81:45–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Burtness B, Harrington KJ, Greil R et al (2019) Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394:1915–1928

    Article  CAS  PubMed  Google Scholar 

  76. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  77. Haddad RI, Nasr C, Bischoff L et al (2018) NCCN guidelines insights: thyroid carcinoma, version 2. 2018. J Natl Compr Canc Netw 16:1429–1440

    Article  PubMed  Google Scholar 

  78. Trimboli P, Treglia G, Giovanella L (2015) Preoperative measurement of serum thyroglobulin to predict malignancy in thyroid nodules: a systematic review. Horm Metab Res 47:247–252

    CAS  PubMed  Google Scholar 

  79. Wells S, Asa S, Dralle H et al (2015) American thyroid association guidelines task force on medullary thyroid carcinoma. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25:567–610

    Article  PubMed  PubMed Central  Google Scholar 

  80. Robert C, Karaszewska B, Schachter J et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39

    Article  PubMed  Google Scholar 

  81. Long GV, Flaherty KT, Stroyakovskiy D et al (2017) Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 28:1631–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ascierto PA, Dummer R, Gogas HJ et al (2020) Update on tolerability and overall survival in COLUMBUS: landmark analysis of a randomised phase 3 trial of encorafeniba plus binimetinib vs vemurafenib or encorafenib in patients with BRAF V600-mutant melanoma. Eur J Cancer 126:33–44

    Article  CAS  PubMed  Google Scholar 

  83. Robert C, Grob JJ, Stroyakovskiy D et al (2019) Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med 381:626–636

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi A, Namikawa K, Nakano E et al (2020) Real-world efficacy and safety data for dabrafenib and trametinib combination therapy in Japanese patients with BRAF V600 mutation-positive advanced melanoma. J Dermatol 47:257–264

    Article  CAS  PubMed  Google Scholar 

  85. Dummer R, Brase JC, Garrett J et al (2020) Adjuvant dabrafenib plus trametinib versus placebo in patientswith resected, BRAF (V600) -mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial. Lancet Oncol 21:358–372

    Article  CAS  PubMed  Google Scholar 

  86. Long GV, Hauschild A, Santinami M et al (2017) Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med 377:1813–1823

    Article  CAS  PubMed  Google Scholar 

  87. Gutiérrez-Castañeda LD, Nova JA, Tovar-Parra JD (2020) Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma: a systemic review. Melanoma Res 30:62–70

    Article  PubMed  Google Scholar 

  88. Forsythe A, Zhang W, Phillip Strauss U et al (2020) A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors. Ther Adv Med Oncol 12:1758835920975613. https://doi.org/10.1177/1758835920975613.eCollection

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Okamura R, Boichard A, Kato S et al (2018) Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol. https://doi.org/10.1200/PO.18.00183. (Epub 2018 Nov 15)

    Article  PubMed  PubMed Central  Google Scholar 

  90. Forschner A, Forchhammer S, Bonzheim I (2020) NTRK gene fusions in melanoma: detection, prevalence and potential therapeutic implications. J Dtsch Dermatol Ges 18:1387–1392

    PubMed  Google Scholar 

  91. NCCN clinical practice guidelines in oncology (NCCN Guidelines®) melanoma: cutaneous (2023): version 3. 2023–October 27, 2023

  92. Drilon A, Siena S, Ou SI et al (2017) Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov 7:400–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Drilon A, Laetsch TW, Kummar S et al (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hong DS, DuBois SG, Kummar S et al (2020) Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 21:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ashida A, Kiniwa Y, Uhara H et al (2013) Malignant skin tumors: latest basic and clinical research trends: molecular biology of malignant melanoma and tyrosine kinase KIT. Jpn Clin 71:134–138 (in Japanese)

    Google Scholar 

  96. Cho JH, Kim KM, Kwon M et al (2012) Nilotinib in patients with metastatic melanoma harboring KIT gene aberration. Investig New Drugs 30:2008–2014

    Article  CAS  Google Scholar 

  97. Lee SJ, Kim TM, Kim YJ et al (2015) Phase II trial of nilotinib in patients with metastatic malignant melanoma harboring KIT gene aberration: a multicenter trial of Korean Cancer Study Group (UN10-06). Oncologist 20:1312–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carvajal RD, Lawrence DP, Weber JS et al (2015) Phase II study of nilotinib in melanoma harboring KIT alterations following progression to Prior KIT inhibition. Clin Cancer Res 21:2289–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Delyon J, Chevret S, Jouary T et al (2018) STAT3 mediates nilotinib response in KIT-altered melanoma: a phase II multicenter trial of the French Skin Cancer Network. J Invest Dermatol 138:58–67

    Article  CAS  PubMed  Google Scholar 

  100. Guo J, Carvajal RD, Dummer R et al (2017) Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial. Ann Oncol 28:1380–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Guo J, Si L, Kong Y et al (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 29:2904–2909

    Article  CAS  PubMed  Google Scholar 

  102. Carvajal RD, Antonescu CR, Wolchok JD et al (2011) KIT as a therapeutic target in metastatic melanoma. JAMA 305:2327–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hodi FS, Corless CL, Giobbie-Hurder A et al (2013) Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 31:3182–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mahipal A, Tijani L, Chan K et al (2012) A pilot study of sunitinib malate in patients with metastatic uveal melanoma. Melanoma Res 22:440–446

    Article  CAS  PubMed  Google Scholar 

  105. Buchbinder EI, Sosman JA, Lawrence DP et al (2015) Phase 2 study of sunitinib in patients with metastatic mucosal or acral melanoma. Cancer 121:4007–4015

    Article  CAS  PubMed  Google Scholar 

  106. Decoster L, Vande Broek I, Neyns B (2015) Biomarker analysis in a phase II study of sunitinib in patients with advanced melanoma. Anticancer Res 35:6893–6899

    CAS  PubMed  Google Scholar 

  107. Kalinsky K, Lee S, Rubin KM et al (2017) A phase 2 trial of dasatinib in patients with locally advanced or stage IV mucosal, acral, or vulvovaginal melanoma: a trial of the ECOG-ACRIN Cancer Research Group (E2607). Cancer 123:2688–2697

    Article  CAS  PubMed  Google Scholar 

  108. Kluger HM, Dudek AZ, McCann C et al (2011) A phase 2 trial of dasatinib in advanced melanoma. Cancer 117:2202–2208

    Article  CAS  PubMed  Google Scholar 

  109. Ascierto PA, Schadendorf D, Berking C et al (2013) MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  110. Dummer R, Schadendorf D, Ascierto PA et al (2017) Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 18:435–445

    Article  CAS  PubMed  Google Scholar 

  111. Toh Y, Kitagawa Y, Kuwano H et al (2016) A nation-wide survey of follow-up strategies for esophageal cancer patients after a curative esophagectomy or a complete response by definitive chemoradiotherapy in Japan. Esophagus 13:173–181

    Article  Google Scholar 

  112. The Japan Esophageal Society (ed) (2022) Guidelines for diagnosis and treatment of carcinoma of the esophagus 2022 (in Japanese)

  113. Shimada H, Yajima S, Oshima Y et al (2012) Impact of serum biomarkers on esophageal squamous cell carcinoma. Esophagus 9:131–140

    Article  Google Scholar 

  114. Shimada H, Takeda A, Arima M et al (2000) Serum p53 antibody is a useful tumor marker in superficial esophageal squamous cell carcinoma. Cancer 89:1677–1683

    Article  CAS  PubMed  Google Scholar 

  115. Kunizaki M, Hamasaki K, Wakata K et al (2018) Clinical value of serum p53 antibody in the diagnosis and prognosis of esophageal squamous cell carcinoma. Anticancer Res 38:1807–1813. https://doi.org/10.21873/anticanres.12419. (in press)

    Article  CAS  PubMed  Google Scholar 

  116. Mei X, Zhu X, Zuo L et al (2019) Predictive significance of CYFRA21-1, squamous cell carcinoma antigen and carcinoembryonic antigen for lymph node metastasis in patients with esophageal squamous cancer. Int J Biol Mark 34:200–204. https://doi.org/10.1177/1724600819847999. (Epub 2019 May 15)

    Article  CAS  Google Scholar 

  117. Okamura K, Takayama K, Izumi M et al (2013) Diagnostic value of CEA and CYFRA 21–1 tumor markers in primary lung cancer. Lung Cancer 80:45–49. https://doi.org/10.1016/j.lungcan.2013.01.002. (Epub 2013 Jan 23)

    Article  PubMed  Google Scholar 

  118. Shimada H, Noie T, Ohashi M et al (2014) Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer 17:26–33

    Article  CAS  PubMed  Google Scholar 

  119. Jing JX, Wang Y, Xu XQ et al (2014) Tumor markers for diagnosis, monitoring of recurrence and prognosis in patients with upper gastrointestinal tract cancer. Asian Pac J Cancer Prev 15:10267–10272

    Article  PubMed  Google Scholar 

  120. Xu YW, Chen H, Guo HP et al (2019) Combined detection of serum autoantibodies as diagnostic biomarkers in esophagogastric junction adenocarcinoma. Gastric Cancer 22:546–557. https://doi.org/10.1007/s10120-018-0894-y. (in press)

    Article  CAS  PubMed  Google Scholar 

  121. Shimada H, Nagata M, Cho A et al (2014) Long-term monitoring of serum p53 antibody after neoadjuvant chemotherapy and surgery for esophageal adenocarcinoma: report of a case. Surg Today 44:1957–1961

    Article  CAS  PubMed  Google Scholar 

  122. Amano K, Kumamoto K, Kuwabara K et al (2012) The clinical significance of serum anti-p53 antibody as a monitoring marker in colorectal cancer. Jpn J Cancer Chemother 39(12):2170–2172 (in Japanese)

    Google Scholar 

  123. Shimada H, Shiratori T, Takeda A et al (2009) Perioperative changes of serum p53 antibody titer is a predictor for survival in patients with esophageal squamous cell carcinoma. World J Surg 33:272–277. https://doi.org/10.1007/s00268-008-9821-4

    Article  PubMed  Google Scholar 

  124. Kochi R, Yajima S, Nanami T et al (2018) Five-year postsurgical monitoring of serum p53 antibody for locally advanced esophageal squamous cell carcinoma. Clin J Gastroenterol 11:278–281. https://doi.org/10.1007/s12328-018-0839-3. (Epub 2018 Mar 1)

    Article  PubMed  Google Scholar 

  125. Yamashita K, Makino T, Tanaka K et al (2017) Peritherapeutic serum p53 antibody titers are predictors of survival in patients with esophageal squamous cell carcinoma undergoing neoadjuvant chemotherapy and surgery. World J Surg 41:1566–1574. https://doi.org/10.1007/s00268-017-3894-x

    Article  PubMed  Google Scholar 

  126. Shimada H, Nabeya Y, Okazumi S et al (2003) Prediction of survival with squamous cell carcinoma antigen in patients with resectable esophageal squamous cell carcinoma. Surgery 133:486–494

    Article  PubMed  Google Scholar 

  127. Wu LL, Liu X, Huang W et al (2020) Preoperative squamous cell carcinoma antigen and albumin serum levels predict the survival of patients with stage T1–3N0M0 esophageal squamous cell carcinoma: a retrospective observational study. J Cardiothorac Surg 15:115. https://doi.org/10.1186/s13019-020-01163-6. (in press)

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yang Y, Huang X, Zhou L et al (2019) Clinical use of tumor biomarkers in prediction for prognosis and chemotherapeutic effect in esophageal squamous cell carcinoma. BMC Cancer 19:526. https://doi.org/10.1186/s12885-019-5755-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cao X, Zhang L, Feng GR et al (2012) Preoperative Cyfra21-1 and SCC-Ag serum titers predict survival in patients with stage II esophageal squamous cell carcinoma. J Transl Med 10:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shimada H, Nabeya Y, Okazumi S et al (2003) Prognostic significance of CYFRA 21–1 in patients with esophageal squamous cell carcinoma. J Am Coll Surg 196:573–578

    Article  PubMed  Google Scholar 

  131. Suzuki T, Yajima S, Ishioka N et al (2018) Prognostic significance of high serum p53 antibody titers in patients with esophageal squamous cell carcinoma. Esophagus 15:294–300

    Article  PubMed  Google Scholar 

  132. Takashi S, Satoshi Y, Akihiko O et al (2021) Clinical impact of preoperative serum p53 antibody titers in 1487 patients with surgically treated esophageal squamous cell carcinoma: a multi-institutional study. Esophagus 18(1):65–71. https://doi.org/10.1007/s10388-020-00761-6. (Epub 2020 Jul 26)

    Article  PubMed  Google Scholar 

  133. Shimada H, Nabeya Y, Okazumi S et al (2002) Prognostic significance of serum p53 antibody in patients with esophageal squamous cell carcinoma. Surgery 132:41–47

    Article  PubMed  Google Scholar 

  134. Shimada H, Kitabayashi H, Nabeya Y et al (2003) Treatment response and prognosis of patients after recurrence of esophageal cancer. Surgery 133:24–31

    Article  PubMed  Google Scholar 

  135. Blanchard P, Quero L, Pacault V et al (2012) Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy. BMC Cancer 12:119

    Article  PubMed  PubMed Central  Google Scholar 

  136. Suzuki T, Okamura A, Watanabe M et al (2020) Neoadjuvant chemoradiotherapy with cisplatin plus fluorouracil for borderline resectable esophageal squamous cell carcinoma. Ann Surg Oncol 27:1510–1517. https://doi.org/10.1245/s10434-019-08124-x. (Epub 2019 Dec 9)

    Article  PubMed  Google Scholar 

  137. Suzuki T, Yajima S, Okamura A et al (2022) Japan Esophageal Society Promotion Research: p53 Antibody Multicenter Research Group. Prognostic impact of carcinoembryonic antigen in 1822 surgically treated esophageal squamous cell carcinoma: multi-institutional study of the Japan Esophageal Society. Dis Esophagus. https://doi.org/10.1093/dote/doac029. (in press)

    Article  PubMed  Google Scholar 

  138. Japanese Gastric Cancer Association (ed) (2021) Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 24(1):1–21

  139. Terasawa T, Nishida H, Kato K et al (2014) Prediction of gastric cancer development by serum pepsinogen test and Helicobacter pylori seropositivity in Eastern Asians: a systematic review and meta-analysis. PLoS ONE 9(10):e109783

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hamashima C, Systematic Review Group and Guideline Development Group for Gastric Cancer Screening Guidelines (2018) Update version of the Japanese Guidelines for Gastric Cancer Screening. Jpn J Clin Oncol 48(7):673–683

    Article  PubMed  Google Scholar 

  141. National Comprehensive Cancer Network guidelines. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed 30 Jan 2024

  142. Japanese Gastric Cancer Association (ed) (2017) Japanese classification of gastric carcinoma, the 15th edition (in Japanese)

  143. Virgilio E, Proietti A, D’Urso R et al (2017) Measuring intragastric tumor markers in gastric cancer patients: a systematic literature review on significance and reliability. Anticancer Res 37(6):2817–2821

    PubMed  Google Scholar 

  144. Japanese Gastric Cancer Association (ed) (2021) Japanese gastric cancer treatment guidelines, the 6th Edition (in Japanese)

  145. Gu L, Chen M, Guo D et al (2017) PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS ONE 12(8):e0182692

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sunami K, Ichikawa H, Kubo T et al (2019) Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: a hospital-based study. Cancer Sci 110(4):1480–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matsuoka T, Yashiro M (2020) Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol 12(1):1–20

    Article  PubMed  PubMed Central  Google Scholar 

  148. Locker GY, Hamilton S, Harris J et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24(33):5313–5327

    Article  CAS  PubMed  Google Scholar 

  149. Duffy MJ, Van Dalen A, Haglund C et al (2003) Clinical utility of biochemical markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines. Eur J Cancer 39:718–727

    Article  CAS  PubMed  Google Scholar 

  150. Sturgeon CM, Duffy MJ, Stenman U-H et al (2008) National Academy of Clinical Biochemistry Laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54(12):e11–e79

    Article  CAS  PubMed  Google Scholar 

  151. Duffy MJ, Lamerz R, Haglund C et al (2014) Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer 134(11):2513–3252

    Article  CAS  PubMed  Google Scholar 

  152. NCCN Guidelines Version 2.2020 Colon cancer. National Conprehensive Cancer Network

  153. Labianca R, Nordlinger B, Beretta GD et al (2010) Primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up. Ann Oncol 21(Supplement 5):v70–v77

    Article  PubMed  Google Scholar 

  154. NCCN Guidelines Version 1.2015 colorectal cancer screening

  155. Allegra CJ, Rumble RB, Hamilton SR et al (2016) Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J Clin Oncol 34(2):179–185

    Article  CAS  PubMed  Google Scholar 

  156. Douillard J-Y, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034

    Article  CAS  PubMed  Google Scholar 

  157. Hashiguchi Y, Muro K, Saito Y et al (2020) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 25(1):1–42

    Article  PubMed  Google Scholar 

  158. Lothe RA, Peltomaki P, Meling GI et al (1993) Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53(24):5849–5852

    CAS  PubMed  Google Scholar 

  159. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Overman MJ, McDermott R, Leach JL et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. André T, Shiu K-K, Kim TW et al (2020) Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N Engl J Med 383(23):2207–2218

    Article  PubMed  Google Scholar 

  162. Joensuu H, Rutkowski P, Nishida T et al (2015) KIT and PDGFRA mutations and risk of GI stromal tumor recurrence. J Clin Oncol 33:634–642

    Article  CAS  PubMed  Google Scholar 

  163. Wardelmann E, Losen I, Hans V et al (2003) Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 106:887–895

    Article  CAS  PubMed  Google Scholar 

  164. Martin J, Poveda A, Llombart-Bosch A et al (2005) Spanish Group for Sarcoma Research. Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J Clin Oncol 23:6190–6198

    Article  CAS  PubMed  Google Scholar 

  165. Wozniak A, Rutkowski P, Piskorz A et al (2012) Prognostic value of KIT/PDGFRA mutations in gastrointestinal stromal tumours (GIST): Polish Clinical GIST Registry experience. Ann Oncol 23:353–360

    Article  CAS  PubMed  Google Scholar 

  166. Joensuu H, Wardelmann E, Sihto H et al (2017) Effect of KIT and PDGFRA mutations on survival in patients with gastrointestinal stromal tumors treated with adjuvant imatinib: An exploratory analysis of a randomized clinical trial. JAMA Oncol 3:602–609

    Article  PubMed  PubMed Central  Google Scholar 

  167. Corless CL, Schroeder A, Griffith D et al (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 23:5357–5364

    Article  CAS  PubMed  Google Scholar 

  168. Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    Article  CAS  PubMed  Google Scholar 

  169. Heinrich MC, Owzar K, Corless CL (2008) Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 26:5360–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Heinrich MC, Maki RG, Corless CL et al (2008) Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 26:5352–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ben-Ami E, Barysauskas CM, von Mehren M et al (2016) Long-term follow-up results of the multicenter phase II trial of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of standard tyrosine kinase inhibitor therapy. Ann Oncol 27:1794–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yeh CN, Chen MH, Chen YY et al (2017) A phase II trial of regorafenib in patients with metastatic and/or a unresectable gastrointestinal stromal tumor harboring secondary mutations of exon 17. Oncotarget 8:44121–44130

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hasegawa K, Takemura N, Yamashita T et al (2023) Clinical practice guidelines for hepatocellular carcinoma: the Japan Society of Hepatology 2021 version (5th JSH-HCC guidelines). Hepatol Res 53:383–390

    Article  PubMed  Google Scholar 

  174. Wang X, Zhang Y, Yang N et al (2020) Evaluation of the combined application of AFP, AFP-L3%, and DCP for hepatocellular carcinoma diagnosis: a meta-analysis. Biomed Res Int. https://doi.org/10.1155/2020/5087643

    Article  PubMed  PubMed Central  Google Scholar 

  175. Tamura Y, Suda T, Arii S et al (2013) Value of highly sensitive fucosylated fraction of alpha-fetoprotein for prediction of hepatocellular carcinoma recurrence after curative treatment. Dig Dis Sci 58:2406–2412

    Article  CAS  PubMed  Google Scholar 

  176. Cheng J, Wang W, Zhang Y et al (2014) Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: systematic review and meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0087011. (in press)

    Article  PubMed  PubMed Central  Google Scholar 

  177. Asahina Y, Tsuchiya K, Nishimura T et al (2013) α-Fetoprotein levels after interferon therapy and risk of hepatocarcinogenesis in chronic hepatitis C. Hepatology 58:1253–1262

    Article  CAS  PubMed  Google Scholar 

  178. Oze T, Hiramatsu N, Yakushijin T et al (2014) Post-treatment levels of a-fetoprotein predict incidence of hepatocellular carcinoma after interferon therapy. Clin Gastroenterol Hepatol 12:1186–1195

    Article  CAS  PubMed  Google Scholar 

  179. Yasui Y, Kurosaki M, Komiyama Y et al (2018) Wisteria floribunda agglutinin-positive Mac-2 binding protein predicts early occurrence of hepatocellular carcinoma after sustained virologic response by direct-acting antivirals for hepatitis C virus. Hepatol Res 48(13):1131–1139

    Article  CAS  PubMed  Google Scholar 

  180. Yamasaki K, Tateyama M, Abiru S et al (2014) Elevated serum levels of wisteria floribunda agglutinin-positive human Mac-2 binding protein predict the development of hepatocellular carcinoma in hepatitis C patients. Hepatorogy 60:1563–1570

    Article  CAS  Google Scholar 

  181. Sasaki R, Yamasaki K, Abiru S et al (2015) Serum wisteria floribunda agglutinin-positive Mac-2 binding protein values predict the development of hepatocellular carcinoma among patients with chronic hepatitis C after sustained virological response. PLoS ONE. https://doi.org/10.1371/journal.pone.0129053. (in press)

    Article  PubMed  PubMed Central  Google Scholar 

  182. Nakagawa M, Nawa N, Takeichi E et al (2020) Mac-2 binding protein glycosylation isomer as a novel predictive biomarker for patient survival after hepatitis C virus eradication by DAAs. J Gastroenterol 55:990–999

    Article  CAS  PubMed  Google Scholar 

  183. Tshering G, Dorji PW, Chaijaroenkul W et al (2018) Biomarkers for the diagnosis of cholangiocarcinoma: a systematic review. Am J Trop Med Hyg 98:1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lumachi F, Lo Re G, Tozzoli R et al (2014) Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19–9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: a preliminary case-control study. Anticancer Res 34:6663–6667

    CAS  PubMed  Google Scholar 

  185. Li Y, Li DJ, Chen J et al (2015) Application of joint detection of AFP, CA19-9, CA125 and CEA in identification and diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev 16:3451–3455

    Article  PubMed  Google Scholar 

  186. Tao LY, Cai L, He XD et al (2010) Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am Surg 76:1210–1203

    Article  PubMed  Google Scholar 

  187. Juntermanns B, Radunz S, Heuer M et al (2010) Tumor markers as a diagnostic key for hilar cholangiocarcinoma. Eur J Med Res 15:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kondo N, Murakami Y, Uemura K et al (2014) Elevated perioperative serum CA 19–9 levels are independent predictors of poor survival in patients with resectable cholangiocarcinoma. J Surg Oncol 110:422–429

    Article  CAS  PubMed  Google Scholar 

  189. Liu ZH, Chen Z, Ma LL et al (2012) Factors influencing the prognosis of patients with intrahepatic cholangiocarcinoma. Acta Gastroenterol Belg 75:215–218

    PubMed  Google Scholar 

  190. Liu SL, Song ZF, Hu QG et al (2010) Serum carbohydrate antigen (CA) 19–9 as a prognostic factor in cholangiocarcinoma: a meta-analysis. Front Med China 4:457–462

    Article  PubMed  Google Scholar 

  191. Harder J, Kummer O, Olschewski M et al (2007) Prognostic relevance of carbohydrate antigen 19–9 levels in patients with advanced biliary tract cancer. Cancer Epidemiol Biomarkers Prev 16:2097–2100

    Article  CAS  PubMed  Google Scholar 

  192. Grunnet M, Christensen IJ, Lassen U et al (2015) Decline in CA19-9 during chemotherapy predicts survival in four independent cohorts of patients with inoperable bile duct cancer. Eur J Cancer 51:1381–1388

    Article  CAS  PubMed  Google Scholar 

  193. Voigtländer T, David S, Thamm K et al (2014) Angiopoietin-2 and biliary diseases: elevated serum, but not bile levels are associated with cholangiocarcinoma. PLoS ONE 9:e97046

    Article  PubMed  PubMed Central  Google Scholar 

  194. Leelawat K, Narong S, Wannaprasert J et al (2010) Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma. World J Gastroenterol 16:4697–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li YG, Zhang N (2009) Clinical significance of serum tumour M2-PK and CA19-9 detection in the diagnosis of cholangiocarcinoma. Dig Liver Dis 41:605–608

    Article  CAS  PubMed  Google Scholar 

  196. Charatcharoenwitthaya P, Enders FB, Halling KC et al (2008) Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 48:1106–1117

    Article  CAS  PubMed  Google Scholar 

  197. Uenishi T, Yamazaki O, Tanaka H et al (2008) Serum cytokeratin 19 fragment (CYFRA21-1) as a prognostic factor in intrahepatic cholangiocarcinoma. Ann Surg Oncol 15:583–589

    Article  PubMed  Google Scholar 

  198. John AR, Haghighi KS, Taniere P et al (2006) Is a raised CA 19–9 level diagnostic for a cholangiocarcinoma in patients with no history of sclerosing cholangitis ? Dig Surg 23:319–324

    Article  CAS  PubMed  Google Scholar 

  199. Levy C, Lymp J, Angulo P et al (2005) The value of serum CA 19–9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci 50:1734–1740

    Article  CAS  PubMed  Google Scholar 

  200. Tangkijvanich P, Thong-ngam D, Theamboonlers A et al (2004) Diagnostic role of serum interleukin 6 and CA 19–9 in patients with cholangiocarcinoma. Hepatogastroenterology 51:15–19

    CAS  PubMed  Google Scholar 

  201. Qin XL, Wang ZR, Shi JS et al (2004) Utility of serum CA19-9 in diagnosis of cholangiocarcinoma: in comparison with CEA. World J Gastroenterol 10:427–432

    Article  PubMed  PubMed Central  Google Scholar 

  202. Siqueira E, Schoen RE, Silverman W et al (2002) Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis. Gastrointest Endosc 56:40–47

    Article  PubMed  Google Scholar 

  203. Patel AH, Harnois DM, Klee GG et al (2000) The utility of CA 19–9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 95:204–207

    Article  CAS  PubMed  Google Scholar 

  204. Chalasani N, Baluyut A, Ismail A et al (2000) Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology 31:7–11

    Article  CAS  PubMed  Google Scholar 

  205. Liang B, Zhong L, He Q et al (2015) Diagnostic accuracy of serum CA19-9 in patients with cholangiocarcinoma: a systematic review and meta-analysis. Med Sci Monit 21:3555–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Björnsson E, Kilander A, Olsson R (1999) CA 19–9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver 19:501–508

    Article  PubMed  Google Scholar 

  207. Japan Pancreas Society (ed) (2022) Clinical practice guidelines for pancreatic cancer 2022 (in Japanese). Japan Pancreas Society. http://www.suizou.org/pdf/pancreatic_cancer_cpg-2022.pdf. Accessed 30 Jan 2024

  208. Tempero MA, Malafa MP, Chiorean EG et al (2019) Pancreatic adenocarcinoma, Version 1. 2019. Featured updates to the NCCN guidelines. J Natl Compr Cance Netw 3:202–210

    Article  Google Scholar 

  209. Locker GY, Hamilton S, Harris J et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24:5313–5327

    Article  CAS  PubMed  Google Scholar 

  210. Marrelli D, Caruso S, Pedrazzani C et al (2009) CA19-9 serum levels in obstructive jaundice: clinical value in benign and malignant conditions. Am J Surg 198:333–339

    Article  CAS  PubMed  Google Scholar 

  211. Goonetilleke KS, Siriwardena AK (2007) Systematic review of carbohydrate antigen (CA 19–9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 33:266–270

    Article  CAS  PubMed  Google Scholar 

  212. Meng Q, Shi S, Liang C et al (2017) Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis. Onco Targets Ther 10:4591–4598

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zhang Y, Yang J, Li H et al (2015) Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis. Int J Clin Exp Med 8:11683–11691

    PubMed  PubMed Central  Google Scholar 

  214. Satake K, Takeuchi T, Homma T et al (1994) CA19-9 as a screening and diagnostic tool in symptomatic patients: the Japanese experience. Pancreas 9:703–706

    Article  CAS  PubMed  Google Scholar 

  215. Kim J, Lee KT, Lee JK et al (2004) Clinical usefulness of carbohydrate antigen 19–9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol 19:182–186

    Article  PubMed  Google Scholar 

  216. Chang CY, Huang SP, Chiu HM et al (2006) Low efficacy of serum levels of CA 19–9 in prediction of malignant diseases in asymptomatic population in Taiwan. Hepatogastroenterology 53:1–4

    PubMed  Google Scholar 

  217. Suzuki T, Imai M, Kubota M et al (2015) Evaluation of elevated serum CA19-9 levels at cancer screening center. Off J Jpn Soc Ningen Dock 30:22–29 (in Japansese)

    Google Scholar 

  218. Ballehaninna UK, Chamberlain RS (2012) The clinical utility of serum CA 19–9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J Gastrointest Oncol 3:105–119

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Hartwig W, Strobel O, Hinz U et al (2013) CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann Surg 20:2188–2196

    Google Scholar 

  220. Liu JI, Gao J, Du Y et al (2012) Combination of plasma microRNAs with serum CA19 - 9 for early detection of pancreatic cancer. Int J Cancer 131:683–691

    Article  CAS  PubMed  Google Scholar 

  221. Daamen LA, Groot VP, Heerkens HD et al (2018) Systematic review on the role of serum tumor markers in the detection of recurrent pancreatic cancer. HPB 20:297–304

    Article  PubMed  Google Scholar 

  222. Kondo N, Murakami Y, Uemura K et al (2010) Prognostic impact of perioperative serum CA 19–9 levels in patients with resectable pancreatic cancer. Ann Surg Oncol 17:2321–2329

    Article  PubMed  Google Scholar 

  223. Ferrone CR, Finkelstein DM, Thayer SP et al (2006) Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 24:2897–2902

    Article  CAS  PubMed  Google Scholar 

  224. Macedo FI, Ryon E, Maithel SK et al (2019) Survival outcomes associated with clinical and pathological response following neoadjuvant FOLFIRINOX or gemcitabine/nab-paclitaxel chemotherapy in resected pancreatic cancer. Ann Surg 270:400–413

    Article  PubMed  Google Scholar 

  225. Tzeng CWD, Balachandran A, Ahmad M et al (2014) Serum carbohydrate antigen 19–9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. HPB (Oxford) 16:430–438

    Article  PubMed  Google Scholar 

  226. Bauer TM, El-Rayes BF, Li X et al (2013) Carbohydrate antigen 19–9 is a prognostic and predictive biomarker in patients with advanced pancreatic cancer who receive gemcitabine-containing chemotherapy: a pooled analysis of 6 prospective trials. Cancer 119:285–292

    Article  CAS  PubMed  Google Scholar 

  227. Berger AC, Garcia M, Hoffman JP et al (2008) Postresection CA 19–9 predicts overall survival in patients with pancreatic cancer treated with adjuvant chemoradiation: a prospective validation by RTOG 9704. J Clin Oncol 26:5918–5922

    Article  PubMed  PubMed Central  Google Scholar 

  228. Tsai S, George B, Wittmann D et al (2020) Importance of normalization of CA19-9 levels following neoadjuvant therapy in patients with localized pancreatic cancer. Ann Surg 271:740–747

    Article  PubMed  Google Scholar 

  229. Humphris JL, Chang DK, Johns AL et al (2012) The prognostic and predictive value of serum CA19-9 in pancreatic cancer. Ann Oncol 23:1713–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Hess V, Glimelius B, Grawe P et al (2008) CA 19–9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol 9:132–138

    Article  CAS  PubMed  Google Scholar 

  231. Pelzer U, Hilbig A, Sinn M et al (2013) Value of carbohydrate antigen 19–9 in predicting response and therapy control in patients with metastatic pancreatic cancer undergoing first-line therapy. Front Oncol 3:155

    Article  PubMed  PubMed Central  Google Scholar 

  232. Ko AH, Hwang J, Venook AP et al (2005) Serum CA19-9 response as a surrogate for clinical outcome in patients receiving fixed-dose rate gemcitabine for advanced pancreatic cancer. Br J Cancer 93:195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ebert W, Hoppe M, Muley T et al (1997) Monitoring of therapy in inoperable lung cancer patients by measurement of CYFRA 21–1, TPA-TP CEA, and NSE. Anticancer Res 17:2875–2878

    CAS  PubMed  Google Scholar 

  234. Salgia R, Harpole D, Herndon JE 2nd et al (2001) Role of serum tumor markers CA 125 and CEA in nonsmall cell lung cancer. Anticancer Res 21:1241–1246

    CAS  PubMed  Google Scholar 

  235. Satoh H, Ishikawa H, Kamma H et al (1997) Serum sialyl lewis X-i antigen levels in non-small cell lung cancer: correlation with distant metastasis and survival. Clin Cancer Res 3:495–499

    CAS  PubMed  Google Scholar 

  236. Mitsudomi T (2010) Advances in target therapy for lung cancer. Jpn J Clin Oncol 40:101–106

    Article  PubMed  Google Scholar 

  237. Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833

    Article  CAS  PubMed  Google Scholar 

  238. Suzuki K, Nagai K, Yoshida J et al (1999) Prognostic factors in clinical stage I non-small cell lung cancer. Ann Thorac Surg 67:927–932

    Article  CAS  PubMed  Google Scholar 

  239. Ardizzoni A, Cafferata MA, Tiseo M et al (2006) Decline in serum carcinoembryonic antigen and cytokeratin 19 fragment during chemotherapy predicts objective response and survival in patients with advanced nonsmall cell lung cancer. Cancer 107:2842–2849

    Article  CAS  PubMed  Google Scholar 

  240. Mizuguchi S, Nishiyama N, Iwata T et al (2007) Serum Sialyl Lewis x and cytokeratin 19 fragment as predictive factors for recurrence in patients with stage I non-small cell lung cancer. Lung Cancer 58:369–375

    Article  PubMed  Google Scholar 

  241. Soria JC, Ohe Y, Vansteenkiste J et al (2018) Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378:113–125

    Article  CAS  PubMed  Google Scholar 

  242. Mehlman C, Cadranel J, Rousseau-Bussac G et al (2019) Resistance mechanisms to osimertinib in EGFR-mutated advanced non-small-cell lung cancer: a multicentric retrospective French study. Lung Cancer 137:149–156

    Article  PubMed  Google Scholar 

  243. Isobe K, Hata Y, Tochigi N et al (2014) Clinical significance of BIM deletion polymorphism in non-smallcell lung cancer with epidermal growth factor receptormutation. J Thorac Oncol 9:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Soda M, Choi YL, Enomoto M et al (2013) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  Google Scholar 

  245. Shaw AT, Kim DW, Nakagawa K et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394

    Article  CAS  PubMed  Google Scholar 

  246. Peters S, Camidge DR, Shaw AT et al (2017) Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838

    Article  CAS  PubMed  Google Scholar 

  247. Harmsma M, Schutte B, Ramaekers FC (2013) Serum markers in small cell lung cancer: opportunities for improvement. Biochim Biophys Acta 1836:255–272

    CAS  PubMed  Google Scholar 

  248. Zhao WX, Luo JF (2013) Serum neuron-specific enolase levels were associated with the prognosis of small cell lung cancer: a meta-analysis. Tumour Biol 34:3245–3248

    Article  CAS  PubMed  Google Scholar 

  249. Tang JH, Zhang XL, Zhang ZH et al (2011) Diagnostic value of tumor marker pro-gastrin-releasing peptide in patients with small cell lung cancer: a systematic review. Chin Med J (Engl) 124:1563–1568

    PubMed  Google Scholar 

  250. Korse CM, Holdenrieder S, Zhi XY et al (2015) Multicenter evaluation of a new progastrin-releasing peptide (ProGRP) immunoassay across Europe and China. Clin Chim Acta 438:388–395

    Article  CAS  PubMed  Google Scholar 

  251. Petrović M, Bukumirić Z, Zdravković V et al (2014) The prognostic significance of the circulating neuroendocrine markers chromogranin A, pro-gastrin-releasing peptide, and neuron-specific enolase in patients with small-cell lung cancer. Med Oncol 31:823

    Article  PubMed  Google Scholar 

  252. Korse CM, Taal BG, Vincent A et al (2012) Choice of tumour markers in patients with neuroendocrine tumours is dependent on the histological grade. A marker study of chromogranin A, neuron specific enolase, progastrin-releasing peptide and cytokeratin fragments. Eur J Cancer 48:662–671

    Article  CAS  PubMed  Google Scholar 

  253. Ono A, Naito T, Ito I et al (2012) Correlations between serial pro-gastrin-releasing peptide and neuron-specific enolase levels, and the radiological response to treatment and survival of patients with small-cell lung cancer. Lung Cancer 76:439–444

    Article  PubMed  Google Scholar 

  254. Sunaga N, Tsuchiya S, Minato K et al (1999) Serum pro-gastrin-releasing peptide is a useful marker for treatment monitoring and survival in small-cell lung cancer. Oncology 57:143–148

    Article  CAS  PubMed  Google Scholar 

  255. Wójcik E, Kulpa JK, Sas-Korczyńska B et al (2008) Pro-GRP and NSE in therapy monitoring in patients with small cell lung cancer. Anticancer Res 28(5B):3027–3033

    PubMed  Google Scholar 

  256. Nisman B, Biran H, Ramu N et al (2009) The diagnostic and prognostic value of ProGRP in lung cancer. Anticancer Res 29:4827–4832

    CAS  PubMed  Google Scholar 

  257. Huang Z, Xu D, Zhang F et al (2016) Pro-gastrin-releasing peptide and neuron-specific enolase: useful predictors of response to chemotherapy and survival in patients with small cell lung cancer. Clin Transl Oncol 18:1019–1025

    Article  CAS  PubMed  Google Scholar 

  258. Hirose T, Okuda K, Yamaoka T et al (2011) Are levels of pro-gastrin-releasing peptide or neuron-specific enolase at relapse prognostic factors after relapse in patients with small-cell lung cancer? Lung Cancer 71:224–228

    Article  PubMed  Google Scholar 

  259. Jensen EV, Desombre ER, Hurst DJ et al (1967) Estrogen-receptor interactions in target tissues. Arch Anat Microsc Morphol Exp 56:547–569

    CAS  PubMed  Google Scholar 

  260. McGuire WL (1973) Estrogen receptors in human breast cancer. J Clin Investig 52:73–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Fisher B, Anderson S, Tan-Chiu E et al (2001) Tamoxifen and chemotherapy for axillary node-negative, estrogen receptor-negative breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-23. J Clin Oncol 19:931–942

    Article  CAS  PubMed  Google Scholar 

  262. Davies C, Godwin J, Gray R et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784

    Article  CAS  PubMed  Google Scholar 

  263. Early Breast Cancer Trialists’ Collaborative Group (1998) Tamoxifen for early breast cancer. An overview of the randomised trials. Lancet 351:1451–1467

    Article  Google Scholar 

  264. Dowsett M, Allred C, Knox J et al (2008) Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the arimidex, tamoxifen, alone or in combination trial. J Clin Oncol 26:1059–1065

    Article  CAS  PubMed  Google Scholar 

  265. Coussens L, Yang-Feng TL, Liao YC et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139

    Article  CAS  PubMed  Google Scholar 

  266. Akiyama T, Sudo C, Ogawara H et al (1986) The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 232:1644–1646

    Article  CAS  PubMed  Google Scholar 

  267. Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  268. Yamauchi H, O’Neill A, Gelman R et al (1997) Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol 15:2518–2525

    Article  CAS  PubMed  Google Scholar 

  269. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013

    Article  PubMed  Google Scholar 

  270. Balduzzi S, Mantarro S, Guarneri V et al (2014) (2014) Trastuzumab-containing regimens for metastatic breast cancer. Cochrane Database Syst Rev 6:CD006242

    Google Scholar 

  271. Valachis A, Mauri D, Polyzos NP et al (2011) Trastuzumab combined to neoadjuvant chemotherapy in patients with HER2-positive breast cancer: a systematic review and meta-analysis. Breast 20:485–490

    Article  PubMed  Google Scholar 

  272. Nagayama A, Hayashida T, Jinno H et al (2014) Comparative effectiveness of neoadjuvant therapy for HER2-positive breast cancer: a network meta-analysis. J Natl Cancer Inst 106:dju203

    Article  PubMed  Google Scholar 

  273. Moja L, Tagliabue L, Balduzzi S et al (2012) Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst Rev 4(CD006243):2012

    Google Scholar 

  274. Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Coates AS, Winer EP, Goldhirsch A et al (2015) Tailoring therapies–improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26:1533–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. de Azambuja E, Cardoso F, de Castro G et al (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 96:1504–1513

    Article  PubMed  PubMed Central  Google Scholar 

  278. Fasching PA, Heusinger K, Haeberle L et al (2011) Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 11:486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Hugh J, Hanson J, Cheang MC et al (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 27:1168–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. von Minckwitz G, Sinn HP, Raab G et al (2008) Clinical response after two cycles compared to HER2, Ki-67, p53, and bcl-2 in independently predicting a pathological complete response after preoperative chemotherapy in patients with operable carcinoma of the breast. Breast Cancer Res 10:R30

    Article  Google Scholar 

  281. Jones RL, Salter J, A’Hern R et al (2010) Relationship between oestrogen receptor status and proliferation in predicting response and long-term outcome to neoadjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 119:315–323

    Article  CAS  PubMed  Google Scholar 

  282. Viale G, Giobbie-Hurder A, Regan MM et al (2008) Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1–98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol 26:5569–5575

    Article  PubMed  PubMed Central  Google Scholar 

  283. Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  CAS  PubMed  Google Scholar 

  284. Hogan-Ryan A, Fennelly JJ, Jones M et al (1980) Serum sialic acid and CEA concentrations in human breast cancer. Br J Cancer 41:587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Loprinzi CL, Tormey DC, Rasmussen P et al (1986) Prospective evaluation of carcinoembryonic antigen levels and alternating chemotherapeutic regimens in metastatic breast cancer. J Clin Oncol 4:46–56

    Article  CAS  PubMed  Google Scholar 

  286. De La Lande B, Hacene K, Floiras JL et al (2002) Prognostic value of CA 15.3 kinetics for metastatic breast cancer. Int J Biol Markers 17:231–238

    Article  PubMed  Google Scholar 

  287. Robson M, Im SA, Senkus E et al (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377:523–533

    Article  CAS  PubMed  Google Scholar 

  288. Schmid P, Adams S, Rugo HS et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121

    Article  CAS  PubMed  Google Scholar 

  289. The Japanese Urological Association (ed) (2019) Bladder cancer treatment guidelines 2019 edition (in Japanese)

  290. Price SJ, Shephard EA, Stapley SA et al (2014) Non-visible versus visible haematuria and bladder cancer risk: a study of electronic records in primary care. Br J Gen Pract 64:e584–e589

    Article  PubMed  PubMed Central  Google Scholar 

  291. Schmidt-Hansen M, Berendse S, Hamilton W (2015) The association between symptoms and bladder or renal tract cancer in primary care: a systematic review. Br J Gen Pract 65:e769–e775

    Article  PubMed  PubMed Central  Google Scholar 

  292. Bangma CH, Loeb S, Busstra M et al (2013) Outcomes of a bladder cancer screening program using home hematuria testing and molecular markers. Eur Urol 64:41–47

    Article  PubMed  Google Scholar 

  293. The Japanese Society of Urology, The Japanese Society of Pathology and The Japanese Society of Medical Radiology (eds) (2011) Renal pelvis, ureter, and bladder cancer treatment guidelines, 1st ed. (in Japanese)

  294. Huben RP, Mounzer AM, Murphy GP (1988) Tumor grade and stage as prognostic variables in upper tract urothelial tumors. Cancer 62:2016–2020

    Article  CAS  PubMed  Google Scholar 

  295. Habuchi T (2005) Origin of multifocal carcinomas of the bladder and upper urinary tract: molecular analysis and clinical implications. Int J Urol 12:709–716

    Article  CAS  PubMed  Google Scholar 

  296. Mihara S, Kuroda K, Yoshioka R et al (1999) Early detection of renal cell carcinoma by ultrasonographic screening─based on the results of 13 years screening in Japan. Ultrasound Med Biol 25:1033–1039

    Article  CAS  PubMed  Google Scholar 

  297. Kawada S, Yonemitsu K, Morimoto S et al (2001) (2005) Current state and effectiveness of abdominal ultrasonography in complete medical screening. J Med Ultrason 32:173–179

    Article  Google Scholar 

  298. Rosenthal DL, Wojcik EM, Kurtycz DFI (2016) The paris system for reporting urinary cytology. Springer, New York

    Book  Google Scholar 

  299. Chou R, Gore JL, Buckley D et al (2015) Urinary biomarkers for diagnosis of bladder cancer: A systematic review and meta-analysis. Ann Intern Med 163:922–931

    Article  PubMed  Google Scholar 

  300. Hajdinjak T (2008) UroVysion FISH test for detecting urothelial cancers: meta-analysis of diagnostic accuracy and comparison with urinary cytology testing. Urol Oncol 26:646–651

    Article  CAS  PubMed  Google Scholar 

  301. Kojima T, Kawai K, Miyazaki J et al (2017) Biomarkers for precision medicine in bladder cancer. Int J Clin Oncol 22:207–213

    Article  CAS  PubMed  Google Scholar 

  302. Ng K, Stenzl A, Sharma A et al (2020) Urinary biomarkers in bladder cancer: a review of the current landscape and future directions. Urol Oncol S1078–1439(20):30368–30369

    Google Scholar 

  303. Kojima T, Nishiyama H, Ozono S et al (2018) Clinical evaluation of two consecutive UroVysion fluorescence in situ hybridization tests to detect intravesical recurrence of bladder cancer: a prospective blinded comparative study in Japan. Int J Clin Oncol 23:1140–1147

    Article  PubMed  Google Scholar 

  304. Kojima T, Ikeda A, Nishiyama H (2018) A new follow-up strategy for NMIBC using urovision. Jpn J Clin Urol 72:501–506 (in Japanese)

    Google Scholar 

  305. Pharmaceuticals and Medical Devices Agency. Urovision DNA FISH Probe Kit Attachment. https://www.info.pmda.go.jp/tgo/pack/22900EZX00021000_A_01_02/ . Accessed 2019 Jun 17 (in Japanese)

  306. Sarosdy MF, Schellhammer P, Bokinsky G et al (2002) Clinical evaluation of a multi-target fluorescent in situ hybridization assay for detection of bladder cancer. J Urol 168:1950–1954

    Article  CAS  PubMed  Google Scholar 

  307. Jones SJ (2006) DNA-based molecular cytology for bladder cancer surveillance. Urology 67(3 Suppl 1):35–45

    Article  PubMed  Google Scholar 

  308. Yoder BJ, Skacel M, Hedgepeth R et al (2007) Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings. Am J Clin Pathol 127:295–301

    Article  PubMed  Google Scholar 

  309. Seideman C, Canter D, Kim P et al (2015) Multicenter evaluation of the role of UroVysion FISH assay in surveillance of patients with bladder cancer: does FISH positivity anticipate recurrence? World J Urol 33:1309–1313

    Article  CAS  PubMed  Google Scholar 

  310. Batista R, Prazeres H, Sampaio C et al (2019) Validation of a novel, sensitive and specific urine-based test for recurrence surveillance of patients with non-muscle invasive bladder cancer in a comprehensive multicenter study. Front Genet 10:1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Batista R, Vinagre N, Meireles S et al (2020) Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review. Diagnostics (Basel) 10(1):39. https://doi.org/10.3390/diagnostics10010039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Witjes JA, Morote J, Cornel EB et al (2018) Performance of the Bladder EpiCheck (TM) methylation test for patients under surveillance for non-muscle-invasive bladder cancer: Results of a multicenter, prospective, blinded clinical trial. Eur Urol Oncol 1:307–313

    Article  PubMed  Google Scholar 

  313. Springer SU, Chen CH, Rodriguez Pena MDC et al (2018) Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. Elife 7:e32143

    Article  PubMed  PubMed Central  Google Scholar 

  314. Potretzke AM, Knight BA, Vetter JM et al (2016) Diagnostic utility of selective upper tract urinary cytology: a systematic review and meta-analysis of the literature. Urology 96:35–43

    Article  PubMed  Google Scholar 

  315. Miyake M, Owari T, Hori S et al (2018) Emerging biomarkers for the diagnosis and monitoring of urothelial carcinoma. Res Rep Urol 10:251–261

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Barkan GA, Wojcik EM, Nayar R et al (2016) The paris system for reporting urinary cytology: the quest to develop a standardized terminology. Adv Anat Pathol 23:193–201

    Article  PubMed  Google Scholar 

  317. Johannes JR, Nelson E, Bibbo M (2010) Voided urine fluorescence in situ hybridization testing for upper tract urothelial carcinoma surveillance. J Urol 184:879–882

    Article  PubMed  Google Scholar 

  318. Marín-Aguilera M, Mengual L, Ribal MJ et al (2007) Utility of fluorescence in situ hybridization as a non-invasive technique in the diagnosis of upper urinary tract urothelial carcinoma. Eur Urol 51:409–415

    Article  PubMed  Google Scholar 

  319. Grasso M, Bagley DH (2005) Upper urinary tract urothelial carcinoma. Springer, Cham

    Google Scholar 

  320. Tanaka T, Yoneyama T, Noro D et al (2017) Aberrant N-glycosylation profile of serum immunoglobulins is a diagnostic biomarker of urothelial carcinomas. Int J Mol Sci 18:2632

    Article  PubMed  PubMed Central  Google Scholar 

  321. Bratu O, Mischianu D, Marcu D et al (2021) Renal tumor biomarkers (review). Exp Ther Med 22:1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Stillebroer AB, Oosterwijk E, Oyen WJ et al (2007) Radiolabeled antibodies in renal cell carcinoma. Cancer Imaging 7:179–188

    Article  PubMed  PubMed Central  Google Scholar 

  323. Khandani AH, Rathmell WK, Wallen EM et al (2014) PET/CT with (124) I-cG250: great potential and some open questions. AJR Am J Roentgenol 203:261–262

    Article  PubMed  Google Scholar 

  324. Lindenberg L, Mena E, Choyke PL et al (2019) PET imaging in renal cancer. Curr Opin Oncol 31:216–221

    Article  PubMed  PubMed Central  Google Scholar 

  325. Czarnecka AM, Kukwa W, Kornakiewicz A et al (2014) Clinical and molecular prognostic and predictive biomarkers in clear cell renal cell cancer. Future Oncol 10:2493–2508

    Article  CAS  PubMed  Google Scholar 

  326. Komai Y, Saito K, Sakai K et al (2007) Increased preoperative serum C-reactive protein level predicts a poor prognosis in patients with localized renal cell carcinoma. BJU Int 99:77–80

    Article  CAS  PubMed  Google Scholar 

  327. Teishima J, Inoue S, Hayashi T et al (2019) Current status of prognostic factors in patients with metastatic renal cell carcinoma. Int J Urol 26:608–617

    Article  PubMed  Google Scholar 

  328. PSA testing for the pretreatment staging and posttreatment management of prostate cancer, 2013. https://www.auanet.org/guidelines/prostate-specific-antigen-(psa)-best-practice-statement. Accessed 30 Jan 2024

  329. EAU guidelines: prostate cancer. https://uroweb.org/guidelines/prostate-cancer. Accessed 30 Jan 2024

  330. The Japanese Urological Association (ed) (2023) Clinical practice guideline for prostate cancer 2023 (in Japanese)

  331. NCCN Guidelines Version 4.2023. Prostate cancer. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed 30 Jan 2024

  332. Wang MC, Valenzuela LA, Murphy GP et al (1979) Purification of a human prostate specific antigen. Invest Urol 17:159–163

    CAS  PubMed  Google Scholar 

  333. Gustafsson O, Norming U, Almgård LE et al (1992) Diagnostic methods in the detection of prostate cancer: a study of a randomly selected population of 2,400 men. J Urol 148:1827–1831

    Article  CAS  PubMed  Google Scholar 

  334. Catalona WJ, Richie JP, Ahmann FR et al (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151:1283–1290

    Article  PubMed  Google Scholar 

  335. Imai K, Ichinose Y, Kubota Y et al (1995) Diagnostic significance of prostate specific antigen and the development of a mass screening system for prostate cancer. J Urol 154:1085–1089

    Article  CAS  PubMed  Google Scholar 

  336. Thompson IM, Pauler DK, Goodman PJ et al (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 350:2239–2246

    Article  CAS  PubMed  Google Scholar 

  337. Ito K, Yamamoto T, Kubota Y et al (2000) Usefulness of age-specific reference range of prostate-specific antigen for Japanese men older than 60 years in mass screening for prostate cancer. Urology 56:278–282

    Article  CAS  PubMed  Google Scholar 

  338. Gretzer MB, Partin AW (2003) PSA markers in prostate cancer detection. Urol Clin N Am 30:677–686

    Article  Google Scholar 

  339. Nicholson A, Mahon J, Boland A et al (2015) The clinical effectiveness and cost-effectiveness of the PROGENSA prostate cancer antigen 3 assay and the prostate health index in the diagnosis of prostate cancer: a systematic review and economic evaluation. Health Technol Assess 19:1–191 (i-xxxi)

    Article  Google Scholar 

  340. Russo GI, Regis F, Castelli T et al (2017) A systematic review and meta-analysis of the diagnostic accuracy of prostate health index and 4-kallikrein panel score in predicting overall and high-grade prostate cancer. Clin Genitourin Cancer 15:429–439

    Article  PubMed  Google Scholar 

  341. Yoneyama T, Yamamoto H, Yoneyama MS et al (2021) Characteristics of α2,3-sialyl N-glycosylated PSA as a biomarker for clinically significant prostate cancer in men with elevated PSA level. Prostate 81:1411–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Liu Y, Zhao S, Wang J et al (2019) Serum neuroendocrine markers predict therapy outcome of patients with metastatic castration-resistant prostate cancer: a meta-analysis. Urol Int 102:373–384

    Article  CAS  PubMed  Google Scholar 

  343. Rahal AK, Badgett RG, Hoffman RM (2016) Screening coverage needed to reduce mortality from prostate cancer: a living systematic review. PLoS ONE 11:e0153417

    Article  PubMed  PubMed Central  Google Scholar 

  344. Ilic D, Djulbegovic M, Jung JH et al (2018) Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362:k3519

    Article  PubMed  PubMed Central  Google Scholar 

  345. Schröder FH, Hugosson J, Roobol MJ et al (2014) Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet 384:2027–2035

    Article  PubMed  PubMed Central  Google Scholar 

  346. Pinsky PF, Miller E, Prorok P et al (2019) Extended follow-up for prostate cancer incidence and mortality among participants in the prostate, lung, colorectal and ovarian randomized cancer screening trial. BJU Int 123:854–860

    Article  PubMed  Google Scholar 

  347. Shoag JE, Mittal S, Hu JC (2016) Reevaluating PSA testing rates in the PLCO trial. N Engl J Med 374:1795–1796

    Article  PubMed  Google Scholar 

  348. Early detection of prostate cancer: AUA/SUO guideline (2023). https://www.auanet.org/guidelines-and-quality/guidelines/early-detection-of-prostate-cancer-guidelines. Accessed 30 Jan 2024

  349. The Japanese Urological Association (ed) (2018) Screening guideline for prostate cancer 2018 (in Japanese)

  350. NCCN Guidelines Version 2.2023. Prostate cancer early detection. https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf. Accessed 30 Jan 2024

  351. Ito K, Yamamoto T, Ohi M et al (2003) Possibility of re-screening intervals of more than one year in men with PSA levels of 4.0 ng/ml or less. Prostate 57:8–13

    Article  PubMed  Google Scholar 

  352. Kobayashi T, Goto R, Hinotsu S et al (2013) Socioeconomic advantages of longer screening intervals for men with low prostate-specific antigen levels in prostate cancer mass screening (in Japanese). Hinyokika Kiyo 59:159–166

    PubMed  Google Scholar 

  353. D’Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  PubMed  Google Scholar 

  354. van den Broeck T, van den Bergh RCN, Arfi N et al (2019) Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur Urol 75:967–987

    Article  PubMed  Google Scholar 

  355. The Japanese Urological Association, The Japanese Society of Pathology and Japan Radiological Society (eds) (2022) General rule for clinical and pathological studies on prostate cancer, 5th ed. (in Japanese)

  356. Roach M 3rd, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO phoenix consensus conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  357. Scher HI, Morris MJ, Stadler WM et al (2016) Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 34:1402–1418

    Article  PubMed  PubMed Central  Google Scholar 

  358. Dasari S, Wudayagiri R, Valluru L (2015) Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim Acta 445:7–11

    Article  CAS  PubMed  Google Scholar 

  359. Takeda M, Sakuragi N, Okamoto K et al (2002) Preoperative serum SCC, CA125 and CA19-9 levels and lymph node status in squamous cell carcinoma of the uterine cervix. Acta Obstet Gynecol Scand 81:451–457

    Article  PubMed  Google Scholar 

  360. Gaarenstroom KN, Kenter GG, Bonfrer JMG et al (2000) Can initial serum CYFRA 21–1, SCC antigen and TPA levels in squamous cell cervical cancer predict lymph node metastases or prognosis? Gynecol Oncol 77:164–170

    Article  CAS  PubMed  Google Scholar 

  361. Bolli JA, Doering DL, Bosscher JR et al (1994) Squamous cell carcinoma antigen: clinical utility in squamous cell carcinoma of the uterine cervix. Gynecol Oncol 55:169–173

    Article  CAS  PubMed  Google Scholar 

  362. Bonfrer JMG, Gaarenstroom KN, Kenter GG et al (1994) Prognostic significance of serum fragments of cytokeratin 19 measured by CYFRA 21–1 in cervical cancer. Gynecol Oncol 55:371–375

    Article  CAS  PubMed  Google Scholar 

  363. Suzuki Y, Nakano T, Ohno T et al (2000) Serum CYFRA 21–1 in cervical cancer patients treated with radiation therapy. J Cancer Res Clin Oncol 126:332–336

    Article  CAS  PubMed  Google Scholar 

  364. Borras G, Molina R, Xercavins J et al (1995) Tumor antigens CA 19.9, CA 125 and CEA in carcinoma of the uterine cervix. Gynecol Oncol 57:205–211

    Article  CAS  PubMed  Google Scholar 

  365. Hasegawa K, Udagawa Y (2004) Female cancer and tumor marker. Sanfujinka Chiryo 89:273–278 (in Japanese)

    Google Scholar 

  366. Walker JL, Wang SS, Schiffman MH et al (2006) For the ASCUS LSIL Triage Study (ALTS) Group: predicting absolute risk of CIN3 during post-colposcopic follow-up: results from the ASCUS-LSIL Triage Study (ALTS). Am J Obstet Gynecol 195:341–348

    Article  PubMed  Google Scholar 

  367. Castle PE, Solomon D, Schiffman M et al (2005) Human papillomavirus type 16 infections and 2-year absolute risk of cervical precancer in women with equivocal or mild cytologic abnormalities. J Natl Cancer Inst 97:1066–1071

    Article  PubMed  Google Scholar 

  368. Miura S, Matsumoto K, Oki A et al (2006) Do we need a different strategy for HPV screening and vaccination in East Asia? Int J Cancer 119:2713–2715

    Article  CAS  PubMed  Google Scholar 

  369. Kyrgiou M, Athanasiou A, Paraskevaidi M et al (2016) Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: systematic review and meta-analysis. BMJ 354:i3633

    Article  PubMed  PubMed Central  Google Scholar 

  370. Reuschenbach M, Wentzensen N, Dijkstra MG et al (2014) p16INK4a immunohistochemistry in cervical biopsy specimens: a systematic review and meta-analysis of the interobserver agreement. Am J Clin Pathol 142:767–72

    Article  PubMed  Google Scholar 

  371. Cancer Genome Atlas Research Network (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73

    Article  Google Scholar 

  372. Baba T, Budiman K, Konishi I (2015) Genomic analysis and new treatment development of serous adenocarcinoma of the uterine body. Rinsyo Fujinka Sanka 69:81–87 (in Japanese)

    Google Scholar 

  373. Kadoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  Google Scholar 

  374. Buys SS, Partridge E, Black A et al (2011) Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA 305:2295–2303

    Article  CAS  PubMed  Google Scholar 

  375. Kobayashi H, Yamada Y, Sado T et al (2008) A randomized study of screening for ovarian cancer: a multicenter study in Japan. Int J Gynecol Cancer 18:414–420

    Article  CAS  PubMed  Google Scholar 

  376. Jacobs IJ, Menon U, Ryan A et al (2016) Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 387:945–956

    Article  PubMed  PubMed Central  Google Scholar 

  377. Fung MF, Bryson P, Johnston M et al (2004) Screening postmenopausal women for ovarian cancer: a systematic review. J Obstet Gynaecol Can 26:717–728

    Article  PubMed  Google Scholar 

  378. Reade CJ, Riva JJ, Busse JW et al (2013) Risks and benefits of screening asymptomatic women for ovarian cancer: a systematic review and meta-analysis. Gynecol Oncol 130:674–681

    Article  PubMed  Google Scholar 

  379. Henderson JT, Webber EM, Sawaya GF (2018) Screening for ovarian cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 319:595–606

    Article  PubMed  Google Scholar 

  380. Skates SJ, Greene MH, Buys SS et al (2017) Early detection of ovarian cancer using the risk of ovarian cancer algorithm with frequent CA125 testing in women at increased familial risk—combined results from two screening trials. Clin Cancer Res 23:3628–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Rosenthal AN, Fraser LSM, Philpott S et al (2017) Evidence of stage shift in women diagnosed with ovarian cancer during phase II of the United Kingdom Familial Ovarian Cancer Screening Study. J Clin Oncol 35:1411–1420

    Article  PubMed  PubMed Central  Google Scholar 

  382. Duffy MJ, Bonfrer JM, Kulpa J et al (2005) CA125 in ovarian cancer: European Group on Tumor Markers guidelines for clinical use. Int J Gynecol Cancer 15:679–691

    Article  CAS  PubMed  Google Scholar 

  383. ACOG Committee on Gynecologic Practice (2003) The role of the generalist obstetrician-gynecologist in the early detection of ovarian cancer. Int J Gynaecol Obstet 80:235–238

    Google Scholar 

  384. Jacobs I, Oram D, Fairbanks J et al (1990) A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol 97:922–929

    Article  CAS  PubMed  Google Scholar 

  385. Tingulstad S, Hagen B, Skjeldestad FE et al (1996) Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br J Obstet Gynaecol 103:826–831

    Article  CAS  PubMed  Google Scholar 

  386. Van Calster B, Van Hoorde K, Valentin L et al (2014) Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ 349:g5920

    Article  PubMed  PubMed Central  Google Scholar 

  387. Lin J, Qin J, Sangvatanakul V (2013) Human epididymis protein 4 for differential diagnosis between benign gynecologic disease and ovarian cancer: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 167:81–85

    Article  PubMed  Google Scholar 

  388. Moore RG, McMeekin DS, Brown AK et al (2009) A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol 112:40–46

    Article  CAS  PubMed  Google Scholar 

  389. Prat A, Parera M, Peralta S et al (2008) Nadir CA-125 concentration in the normal range as an independent prognostic factor for optimally treated advanced epithelial ovarian cancer. Ann Oncol 19:327–331

    Article  CAS  PubMed  Google Scholar 

  390. Riedinger JM, Eche N, Basuyau JP et al (2008) Prognostic value of serum CA 125 bi-exponential decrease during first line paclitaxel/platinum chemotherapy: a French multicentric study. Gynecol Oncol 109:194–198

    Article  CAS  PubMed  Google Scholar 

  391. Gadducci A, Cosio S, Tana R et al (2009) Serum and tissue biomarkers as predictive and prognostic variables in epithelial ovarian cancer. Crit Rev Oncol Hematol 69:12–27

    Article  PubMed  Google Scholar 

  392. Xu X, Wang Y, Wang F et al (2013) Nadir CA-125 level as prognosis indicator of high-grade serous ovarian cancer. J Ovarian Res 6:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. van Altena AM, Kolwijck E, Spanjer MJ et al (2010) CA125 nadir concentration is an independent predictor of tumor recurrence in patients with ovarian cancer: a population-based study. Gynecol Oncol 119:265–269

    Article  PubMed  Google Scholar 

  394. Markman M, Federico M, Liu PY et al (2006) Significance of early changes in the serum CA-125 antigen level on overall survival in advanced ovarian cancer. Gynecol Oncol 103:195–198

    Article  CAS  PubMed  Google Scholar 

  395. Gadducci A, Cosio S, Zola P et al (2007) Surveillance procedures for patients treated for epithelial ovarian cancer: a review of the literature. Int J Gynecol Cancer 17:21–31

    Article  CAS  PubMed  Google Scholar 

  396. Marcus CS, Maxwell GL, Darcy KM et al (2014) Current approaches and challenges in managing and monitoring treatment response in ovarian cancer. J Cancer 5:25–30

    Article  PubMed  PubMed Central  Google Scholar 

  397. Wilder JL, Pavlik E, Straughn JM et al (2003) Clinical implications of a rising serum CA-125 within the normal range in patients with epithelial ovarian cancer: a preliminary investigation. Gynecol Oncol 89:233–235

    Article  CAS  PubMed  Google Scholar 

  398. Rustin GJ, Marples M, Nelstrop AE et al (2001) Use of CA-125 to define progression of ovarian cancer in patients with persistently elevated levels. J Clin Oncol 19:4054–4057

    Article  CAS  PubMed  Google Scholar 

  399. Santillan A, Garg R, Zahurak ML et al (2005) Risk of epithelial ovarian cancer recurrence in patients with rising serum CA-125 levels within the normal range. J Clin Oncol 23:9338–9343

    Article  PubMed  Google Scholar 

  400. Rustin GJ, van der Burg ME, Griffin CL et al (2010) Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet 376:1155–1163

    Article  PubMed  Google Scholar 

  401. Moore K, Colombo N, Scambia G et al (2018) Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 379:2495–2505

    Article  CAS  PubMed  Google Scholar 

  402. González-Martín A, Pothuri B, Vergote I et al (2019) Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 381:2391–2402

    Article  PubMed  Google Scholar 

  403. Coleman RL, Fleming GF, Brady MF et al (2019) Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N Engl J Med 381:2403–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Ray-Coquard I, Pautier P, Pignata S et al (2019) Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N Engl J Med 381:2416–2428

    Article  CAS  PubMed  Google Scholar 

  405. Wang Y, Ren F, Song Z et al (2020) PARP inhibitors in patients with newly diagnosed advanced ovarian cancer: a meta-analysis of randomized clinical trials. Front Oncol 10:1204

    Article  PubMed  PubMed Central  Google Scholar 

  406. Pujade-Lauraine E, Ledermann JA, Selle F et al (2017) Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18:1274–1284

    Article  CAS  PubMed  Google Scholar 

  407. Ledermann J, Harter P, Gourley C et al (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366:1382–1392

    Article  CAS  PubMed  Google Scholar 

  408. Ledermann J, Harter P, Gourley C et al (2014) Olaparib maintenance therapy in patients with plati-num-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15:852–861

    Article  CAS  PubMed  Google Scholar 

  409. Mirza MR, Monk BJ, Herrstedt J et al (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375:2154–2164

    Article  CAS  PubMed  Google Scholar 

  410. Coleman RL, Oza AM, Lorusso D et al (2017) Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1949–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Tomao F, Bardhi E, Di Pinto A et al (2019) Parp inhibitors as maintenance treatment in platinum sensitive recurrent ovarian cancer: an updated meta- analysis of randomized clinical trials according to BRCA mutational status. Cancer Treat Rev 80:101909

    Article  CAS  PubMed  Google Scholar 

  412. Muruganandan S, Alfonso H, Franklin P et al (2017) Comparison of outcomes following a cytological or histological diagnosis of malignant mesothelioma. Br J Cancer 116:703–708

    Article  PubMed  PubMed Central  Google Scholar 

  413. Hiroshima K, Wu D, Hasegawa M et al (2016) Cytologic differential diagnosis of malignant mesothelioma and reactive mesothelial cells with FISH analysis of p16. Diagn Cytopathol 44:591–598

    Article  PubMed  Google Scholar 

  414. Fujimoto N, Gemba K, Asano M et al (2013) Hyaluronic acid in the pleural fluid of patients with malignant pleural mesothelioma. Respir Investig 51:92–97

    Article  PubMed  Google Scholar 

  415. Robinson BW, Creaney J, Lake R et al (2003) Mesothelin-family proteins and diagnosis of mesothelioma. Lancet 362:1612–1616

    Article  CAS  PubMed  Google Scholar 

  416. Hollevoet K, Reitsma JB, Creaney J et al (2012) Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J Clin Oncol 30:1541–1549

    Article  PubMed  PubMed Central  Google Scholar 

  417. Gao R, Wang F, Wang Z et al (2019) Diagnostic value of soluble mesothelin-related peptides in pleural effusion for malignant pleural mesothelioma: an updated meta-analysis. Medicine (Baltimore) 98:e14979

    Article  CAS  PubMed  Google Scholar 

  418. Paganuzzi M, Onetto M, Marroni P et al (2001) Diagnostic value of CYFRA 21–1 tumor marker and CEA in pleural effusion due to mesothelioma. Chest 119:1138–1142

    Article  CAS  PubMed  Google Scholar 

  419. Pass HI, Levin SM, Harbut MR et al (2012) Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 367:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. van Gelder T, Hoogsteden HC, Vandenbroucke JP et al (1991) The influence of the diagnostic technique on the histopathological diagnosis in malignant mesothelioma. Virchows Arch Pathol Anat Histopathol 418:315–317

    Article  Google Scholar 

  421. van der Bij S, Schaake E, Koffijberg H et al (2011) Markers for the non-invasive diagnosis of mesothelioma: a systematic review. Br J Cancer 104:1325–1333

    Article  PubMed  PubMed Central  Google Scholar 

  422. Husain AN, Colby TV, Ordóñez NG et al (2018) Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 142:89–108

    Article  CAS  PubMed  Google Scholar 

  423. Wang L-M, Shi Z-W, Wang J-L et al (2017) Diagnostic accuracy of BRCA1-associated protein 1 in malignant mesothelioma: a meta-analysis. Oncotarget 8:68863–68872

    Article  PubMed  PubMed Central  Google Scholar 

  424. Panou V, Vyberg M, Weinreich UM et al (2015) The established and future biomarkers of malignant pleural mesothelioma. Cancer Treat Rev 41:486–495

    Article  CAS  PubMed  Google Scholar 

  425. Vogelzang NJ, Rusthoven JJ, Symanowski J et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644

    Article  CAS  PubMed  Google Scholar 

  426. Fennell DA, Ewings S, Ottensmeier C et al (2021) Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol 22(11):1530–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Heetfeld M, Chougnet CN, Olsen IH et al (2015) Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 22:657–664

    Article  CAS  PubMed  Google Scholar 

  428. Lloyd RV, Osamura R, Kloppel G et al (2017) WHO classification of tumours of endocrine organs, 4th edn. IARC Press, Lyon

    Google Scholar 

  429. Sorbye H, Baudin E, Perren A (2018) The problem of high-grade gastroenteropancreatic neuroendocrine neoplasms: well-differentiated neuroendocrine tumors, neuroendocrine carcinomas, and beyond. Endocrinol Metab Clin N Am 47:683–698

    Article  Google Scholar 

  430. Tang LH, Untch BR, Reidy DL et al (2016) Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res 22:1011–1017

    Article  CAS  PubMed  Google Scholar 

  431. Konukiewitz B, Schlitter AM, Jesinghaus M et al (2017) Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20. Mod Pathol 30:587–598

    Article  CAS  PubMed  Google Scholar 

  432. Yachida S, Vakiani E, White CM et al (2012) Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 36:173–184

    Article  PubMed  PubMed Central  Google Scholar 

  433. Hijioka S, Hosoda W, Matsuo K et al (2017) Rb loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: a Japanese multicenter pancreatic NEN-G3 study. Clin Cancer Res 23:4625–4632

    Article  CAS  PubMed  Google Scholar 

  434. Squires MH 3rd, Volkan Adsay N, Schuster M et al (2015) Octreoscan versus FDG-PET for neuroendocrine tumor staging: a biological approach. Ann Surg Oncol 22:2295–2301

    Article  PubMed  Google Scholar 

  435. Yao J, Phan AT (2012) Optimising therapeutic options for patients with advanced pancreatic neuroendocrine tumours. Eur Oncol Haematol 8:217–223

    Article  Google Scholar 

  436. Ikeda M, Morizane C, Hijioka S et al (2020) Optimal strategy of systemic treatment for unresectable pancreatic neuroendocrine tumors based upon opinion of Japanese experts. Pancreatology 20:944–950

    Article  CAS  PubMed  Google Scholar 

  437. Brangwynne CP, Marko JF (2016) Cell division: a sticky problem for chromosomes. Nature 535:234–235

    Article  CAS  PubMed  Google Scholar 

  438. Özaslan E, Karaca H, Koca S et al (2017) Comparison of survival with somatostatin analog and chemotherapy and prognostic factors for treatment in 165 advanced neuroendocrine tumor patients with Ki-67 20% or less. Anticancer Drugs 28:222–229

    Article  PubMed  Google Scholar 

  439. Burningham Z, Hashibe M, Spector L et al (2012) The epidemiology of sarcoma. Clin Sarcoma Res 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  440. Sharma SR, Paonessa NE et al (2022) Clinical biomarkers in soft tissue sarcoma A comprehensive review of current soft tissue sarcoma biomarkers. J Surg Oncol 125(2):239–245

    Article  PubMed  Google Scholar 

  441. Pourrajab F, Zare-Khormizi MR, Hashemi AS et al (2020) Genetic characterization and risk stratification of acute myeloid leukemia. Cancer Manag Res 22:2231–2253. https://doi.org/10.2147/CMAR.S242479.eCollection

    Article  Google Scholar 

  442. Zjablovskaja P, Florian MC (2019) Acute myeloid leukemia: aging and epigenetics. Cancers (Basel) 12:103. https://doi.org/10.3390/cancers12010103

    Article  CAS  PubMed  Google Scholar 

  443. Kirtonia A, Pandya G, Sethi G et al (2020) A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J Mol Med (Berl) 98:1069–1091. https://doi.org/10.1007/s00109-020-01944-5. (Epub 2020 Jul 3)

    Article  PubMed  Google Scholar 

  444. Liu XL, Liu HQ, Li J et al (2020) (2020) Role of epigenetic in leukemia: from mechanism to therapy. Chem Biol Interact 317:108963. https://doi.org/10.1016/j.cbi.2020.108963. (Epub 2020 Jan 21)

    Article  CAS  PubMed  Google Scholar 

  445. Zhao A, Zhou H, Yang J et al (2023) Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 178:71. https://doi.org/10.1038/s41392-023-01342-6

    Article  CAS  Google Scholar 

  446. Umino K, Fujiwara S, Minakata D et al (2019) Prognostic impact of serum soluble interleukin-2 receptor level at diagnosis in elderly patients with diffuse large B-cell lymphoma treated with R-CHOP. Leuk Lymphoma 60:734–741

    Article  CAS  PubMed  Google Scholar 

  447. Oki Y, Kato H, Matsuo K et al (2008) Prognostic value of serum soluble interleukein-2 receptor level in patients with diffuse large B cell lymphoma, treated CHOP or RCHOP-based therapy. Leuk Lymphoma 49:1345–1351

    Article  CAS  PubMed  Google Scholar 

  448. Ennishi D, Yokoyama M, Terui Y et al (2009) Soluble interleukin-2 receptor retains prognostic value in patients with diffuse large B-cell lymphoma receiving rituximab plus CHOP (RCHOP) therapy. Ann Oncol 20:526–533

    Article  CAS  PubMed  Google Scholar 

  449. Wakao D, Murohashi I, Tominaga K et al (2002) Serum thymidine kinase and soluble interleukin-2 receptor predict recurrence of malignant lymphoma. Ann Hematol 81:140–146

    Article  CAS  PubMed  Google Scholar 

  450. Jo SA, Hwang SH, Chang CL et al (2010) Clinical relevance of elevated levels of serum soluble interleukin-2 receptor alpha (sIL-2Rα) in patients with non-Hodgkin’s lymphoma. Korean J Lab Med 30:600–605

    CAS  PubMed  Google Scholar 

  451. Shirouchi Y, Nishimura N, Mishima Y et al (2023) Prognostic value of post-treatment serum soluble interleukin-2 receptor in newly diagnosed diffuse large B-cell lymphoma patients who achieved complete metabolic response following R-CHOP therapy. Sci Rep 13:13713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Hiraga J, Tomita A, Sugimoto T et al (2009) Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 113:4885–4893

    Article  CAS  PubMed  Google Scholar 

  453. Johnson NA, Boyle M, Bashashati A et al (2009) Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood 113:3773–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Kennedy GA, Tey SK, Cobcroft R et al (2002) Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: retrospective review. Br J Haematol 119:412–416

    Article  CAS  PubMed  Google Scholar 

  455. Haidar JH, Shamseddine A, Salem Z et al (2003) Loss of CD20 expression in relapsed lymphomas after rituximab therapy. Eur J Haematol 70:330–332

    Article  PubMed  Google Scholar 

  456. Fierro MT, Savoia P, Quaglino P et al (2003) Systemic therapy with cyclophosphamide and anti-CD20 antibody (rituximab) in relapsed primary cutaneous B-cell lymphoma: a report of 7 cases. J Am Acad Dermatol 49:281–287

    Article  PubMed  Google Scholar 

  457. Shmitz K, Brugger W, Weiss B et al (1999) Clonal selection of CD20-negative non-Hodgkin’s lymphoma cells after treatment with anti-CD20 antibody Rituximab. Br J Haematol 106:571–572

    Article  Google Scholar 

  458. Maeshima A, Taniguchi H, Fujino T et al (2020) Immunohistochemical CD20-negative change in B-cell non-Hodgkin lymphomas after rituximab-containing therapy. Ann Hematol 99:2141–2148

    Article  CAS  PubMed  Google Scholar 

  459. Rajkumar SV, Kumar S (2020) Multiple myeloma current treatment algorithms. Blood Cancer J 10:94

    Article  PubMed  PubMed Central  Google Scholar 

  460. D’Agostino M, Cairns DA, Lahuerta JJ et al (2022) second revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: a european myeloma network (EMN) report within the HARMONY project. J Clin Oncol 40:3406–3418

    Article  CAS  PubMed  Google Scholar 

  461. Hanamura I (2021) Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers (Basel) 13(2):256

    Article  CAS  PubMed  Google Scholar 

  462. Gertz MA, Lacy MQ, Dispenzieri A et al (2005) Clinical implications of t(11;14) (q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood 106:2837–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Hanamura I, Stewart JP, Huang Y et al (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108:1724–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Avet-Loiseau H, Attal M, Moreau P et al (2007) Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 109:3489–3495

    Article  CAS  PubMed  Google Scholar 

  465. Gutierrez NC, Castellanos MV, Martin ML et al (2007) Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t (4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia 21:143–150

    Article  CAS  PubMed  Google Scholar 

  466. Ross FM, Chiecchio L, Dagrada G et al (2010) The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 95:1221–1225

    Article  PubMed  PubMed Central  Google Scholar 

  467. Brown P, Inaba H, Annesley C et al (2020) Pediatric acute lymphoblastic leukemia, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 18:81–112

    Article  CAS  PubMed  Google Scholar 

  468. Inaba H, Mullighan CG (2020) Pediatric acute lymphoblastic leukemia. Haematologica 105:2524–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Creutzig U, van den Heuvel-Eibrink MM, Gibson B et al (2012) Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 120:3187–3205

    Article  CAS  PubMed  Google Scholar 

  470. Tomizawa D, Tsujimoto S-I (2023) Risk-stratified therapy for pediatric acute myeloid leukemia. Cancers (Basel) 15:4171

    Article  CAS  PubMed  Google Scholar 

  471. Borinstein SC, Steppan D, Hayashi M et al (2018) Consensus and controversies regarding the treatment of rhabdomyosarcoma. Pediatr Blood Cancer 65:e26809

    Article  Google Scholar 

  472. Irwin MS, Naranjo A, Zhang FF et al (2021) Revised neuroblastoma risk classification system: a report from the Children’s Oncology Group. J Clin Oncol 39:3229–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Berry DA, Zhou S, Higley H et al (2017) Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia. A meta-analysis. JAMA Oncol 3:e170580

    Article  PubMed  PubMed Central  Google Scholar 

  474. Buldini B, Maurer-Granofszky M, Varotto E et al (2019) Flow-cytometric monitoring of minimal residual disease in pediatric patients with acute myeloid leukemia: Recent advances and future strategies. Front Pediatr 7:412

    Article  PubMed  PubMed Central  Google Scholar 

  475. David JD (2006) Immunohistology of metastatic carcinomas of unknown primary. Diagnostic immunohistochemistry, 2nd edn. Churchill Livingstone, London

    Google Scholar 

  476. Itoh (2013) Immunohistochemistry in diagnostic surgical pathology. Microscopy 48:33–38 (in Japanese)

    CAS  Google Scholar 

  477. Izumi M (2007) About the type of cytokeratin. Pathol Clin Med 25:310–319 (in Japanese)

    CAS  Google Scholar 

  478. Izumi M (2002) Expression of cytokeratin in various tumors and its application to differential diagnosis. Pathol Clin Med 20:673–678 (in Japanese)

    CAS  Google Scholar 

  479. Izumi M (2006) Cell and tissue tests: immunoenzymatic technique 1: epithelial tumor. Clin Dermatol 48:1417–1423 (in Japanese)

    Google Scholar 

  480. Chu P, Wu E, Weiss LM (2000) Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 13:962–972

    Article  CAS  PubMed  Google Scholar 

  481. Bussu F, Sali M, Gallus R et al (2015) HPV and EBV infections in neck metastases from occult primary squamous cell carcinoma: another virus-related neoplastic disease in the head and neck region. Ann Surg Oncol 22:S979–S984

    Article  PubMed  Google Scholar 

  482. Sivars L, Tani E, Näsman A et al (2016) Human papillomavirus as a diagnostic and prognostic tool in cancer of unknown primary in the head and neck region. Anticancer Res 36:487–494

    CAS  PubMed  Google Scholar 

  483. Japanese Society for Head and Neck Cancer (ed) (2022) Japanese clinical practice guidelines for head and neck cancer 2022 (in Japanese)

  484. Hainsworth JD, Rubin MS, Spigel DR et al (2013) Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon Research Institute. J Clin Oncol 31:217–223

    Article  CAS  PubMed  Google Scholar 

  485. Fizazi K, Maillard A, Penel N et al (2019) A phase III trial of empiric chemotherapy with cisplatin and gemcitabine or systemic treatment tailored by molecular gene expression analysis in patients with carcinomas of an unknown primary (CUP) site (GEFCAPI 04). Ann Oncol 30(Supplement 5):v851–v934

    Article  Google Scholar 

  486. Hayashi H, Kurata T, Takiguchi Y et al (2019) Randomized phase II trial comparing site-specific treatment based on gene expression profiling with carboplatin and paclitaxel for patients with cancer of unknown primary site. J Clin Oncol 37:570–579

    Article  CAS  PubMed  Google Scholar 

  487. Hayashi H, Takiguchi Y, Minami H et al (2020) Site-specific and targeted therapy based on molecular profiling by next-generation sequencing for cancer of unknown primary site: a nonrandomized phase 2 clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.4643

    Article  PubMed  PubMed Central  Google Scholar 

  488. Westphalen CB, Federer-Gsponer J, Pauli C et al (2023) Baseline mutational profiles of patients with carcinoma of unknown primary origin enrolled in the CUPISCO study. ESMO Open 8(6):102035. https://doi.org/10.1016/j.esmoop.2023.102035. (in press)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Dr. Takayasu T, Dr. Uno K, Dr. Hirokawa S, Dr. Shiotani A, Dr. Uhara H, Dr. Suzuki T, Dr. Yamashita K, Dr. Naito T, Dr. Watanabe T, Dr. Itoh F, Dr. Kishi K, Dr. Yoneyama T, Dr. Ohyama C, Dr. Nakamura M, Dr. Noguchi R, Dr. Kondo T. And we would like to thank MARUZENYUSHODO Co., Ltd. for the English proofreading work.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Shimada.

Ethics declarations

Conflict of interest

Dr. Kikuchi received lecture fees from Teijin Pharma Ltd. Dr. Hayashida received lecture fees from Pfizer Japan Inc., Eli Lilly Japan K.K., received a research grant from Eli Lilly Japan K.K. Dr. Aoki received lecture fees from Merck & Co., Inc. Dr. Miyachi serves as a consultant to BML Inc. and SRL, Inc. Dr. Takebayashi received lecture fees from Chugai Pharmaceutical Co., Ltd, Kyowa Kirin Co., Ltd., AstraZeneca K.K, Nippon Shinyaku Co., Ltd., Meiji Yakuhin Co., Ltd., SymBio Pharmaceuticals Limited., AbbVie GK, Takeda Pharmaceutical Co., Ltd, Janssen Pharmaceutical K.K., Daiichi Sankyo Co., Ltd., Amgen Inc., Nippon Kayaku Co., Ltd., Otsuka Pharmaceutical Co., Ltd. and Merck & Co. Inc., received a manuscript fee from Chugai Pharmaceutical Co., Ltd. Dr. Miyachi serves as a consultant to BML Inc. and SRL, Inc. Other Shimada, Yamasaki, Yamashita, Araki, Horimoto, Yajima, Yashiro, Yokoi, Chou, Ehira, Nakahara, Yasuda, Isobe, Hatakeyama, Akakura, Nomura, Tada, Yoshimatsu, Hanamura and Takahashi have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, Y., Shimada, H., Yamasaki, F. et al. Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2. Int J Clin Oncol 29, 512–534 (2024). https://doi.org/10.1007/s10147-024-02497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-024-02497-0

Keywords

Navigation