Skip to main content

Advertisement

Log in

Functional outcomes at PICU discharge in hemato-oncology children at a tertiary oncology center in Hong Kong

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Advancements in cancer treatment have resulted in longer survival but often at the expense of new therapy-associated morbidities. The aim of this study is to evaluate functional outcomes of hemato-oncology patients at PICU discharge, and to identify associated risk factors.

Methods

A single-center retrospective observational study. All children (< 19 years) with a hemato-oncology diagnosis admitted to the Hong Kong Children’s Hospital PICU over a 2-year period were included. Functional status upon admission and discharge were compared. Univariable and multi-variable analyses were employed to identify risk factors associated with new morbidities.

Results

Out of 288 PICU admissions, there were 277 live discharges (mortality 4%), of which 52 (18.8%) developed new morbidities. Emergency admission, severity of illness at admission, organ dysfunction and support were associated with new morbidities (OR 1.08–11.96; p < 0.05). Adjusting for confounding factors, higher Pediatric Logistic Organ Dysfunction 2 score at admission was significantly associated with development of new morbidities (OR 1.34; 95% CI 1.18–1.54; p < 0.001).

Conclusion

Critically ill children with hemato-oncological diseases had a higher rate of developing new morbidities (18.8%) compared with the general PICU population (4–8%). This was associated with severity of illness at admission. Further work is warranted to understand the lasting effects of these new morbidities and mitigating interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to individual privacy, but are available from the corresponding author upon reasonable request.

Abbreviations

CI:

Confidence interval

FiO2 :

Fraction of inspired oxygen

FSS:

Functional status scale

GCS:

Glasgow coma scale

IBM:

International Business Machines Corporation

ICU:

Intensive care unit

IQR:

Interquartile range

HFNC:

High flow nasal cannula

HKCH:

Hong Kong Children’s Hospital

PaO2 :

Partial pressure of oxygen

PELOD-2:

Pediatric logistic organ dysfunction 2

PICANet:

Paediatric intensive care audit network

PIM3:

Pediatric index of mortality 3

PICU:

Pediatric intensive care unit

SD:

Standard deviation

SPSS:

Statistical package for the social sciences

VIS:

Vasoactive-inotropic score

WBC:

White blood cells

References

  1. Robison LL, Hudson MM (2014) Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer 14:61–70. https://doi.org/10.1038/nrc3634

    Article  CAS  PubMed  Google Scholar 

  2. American Cancer Society (2021) Key statistics for childhood cancers. https://www.cancer.org/cancer/cancer-in-children/key-statistics.html. Accessed 19 Aug 2021

  3. Vassal G, Fitzgerald E, Schrappe M et al (2014) Challenges for children and adolescents with cancer in Europe: The SIOP-Europe agenda. Pediatr Blood Cancer 61:1551–1557. https://doi.org/10.1002/pbc.25044

    Article  PubMed  Google Scholar 

  4. Harrington RL, Qato DM, Antoon JW et al (2019) Multimorbidity and healthcare utilization among early survivors of pediatric cancer. Pediatr Blood Cancer 66:e27655. https://doi.org/10.1002/pbc.27655

    Article  PubMed  Google Scholar 

  5. University of Leeds and Leicester (2020) Paediatric intensive care audit network – annual report 2020. https://www.picanet.org.uk/wp-content/uploads/sites/25/2021/02/PICANet2020_AnnualReportAppendices_v1.0.pdf. Accessed 1 Aug 2021

  6. McCrory MC, Spaeder MC, Gower EW et al (2017) Time of admission to the PICU and mortality. Pediatr Crit Care Med 18:915–923. https://doi.org/10.1097/PCC.0000000000001268

    Article  PubMed  Google Scholar 

  7. Kalzén H, Larsson B, Eksborg S et al (2018) Survival after PICU admission: The impact of multiple admissions and complex chronic conditions. PLoS ONE 13:e0193294. https://doi.org/10.1371/journal.pone.0193294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ong C, Lee JH, Leow MKS et al (2016) Functional outcomes and physical impairments in pediatric critical care survivors. Pediatr Crit Care Med 17:e247–e259. https://doi.org/10.1097/PCC.0000000000000706

    Article  PubMed  Google Scholar 

  9. Pollack MM, Holubkov R, Funai T et al (2014) Pediatric intensive care outcomes. Pediatr Crit Care Med 15:821–827. https://doi.org/10.1097/PCC.0000000000000250

    Article  PubMed  PubMed Central  Google Scholar 

  10. Namachivayam P, Shann F, Shekerdemian L et al (2010) Three decades of pediatric intensive care: who was admitted, what happened in intensive care, and what happened afterward. Pediatr Crit Care Med 11:549–555. https://doi.org/10.1097/PCC.0b013e3181ce7427

    Article  PubMed  Google Scholar 

  11. Senna S, Ong C, Wong JJ-M et al (2020) Prediction of acquired morbidity using illness severity indices in pediatric intensive care patients. Pediatr Crit Care Med 21:e972–e980. https://doi.org/10.1097/PCC.0000000000002417

    Article  PubMed  Google Scholar 

  12. Heying R, Schneider DT, Körholz D et al (2001) Efficacy and outcome of intensive care in pediatric oncologic patients. Crit Care Med 29:2276–2280. https://doi.org/10.1097/00003246-200112000-00007

    Article  CAS  PubMed  Google Scholar 

  13. Demaret P, Pettersen G, Hubert P et al (2012) The critically-ill pediatric hemato-oncology patient: epidemiology, management, and strategy of transfer to the pediatric intensive care unit. Ann Intensive Care 2:14. https://doi.org/10.1186/2110-5820-2-14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faraci M, Bagnasco F, Giardino S et al (2014) Intensive care unit admission in children with malignant or nonmalignant disease. J Pediatr Hematol Oncol 36:e403–e409. https://doi.org/10.1097/MPH.0000000000000048

    Article  PubMed  Google Scholar 

  15. Duncan CN (2019) The changing landscape of the critical care of pediatric immunocompromised hematology and oncology patients. Critical care of the pediatric immunocompromised hematology/oncology patient. Springer International Publishing, Cham, pp 3–7

    Chapter  Google Scholar 

  16. Zinter MS, DuBois SG, Spicer A et al (2014) Pediatric cancer type predicts infection rate, need for critical care intervention, and mortality in the pediatric intensive care unit. Intensive Care Med 40:1536–1544. https://doi.org/10.1007/s00134-014-3389-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rr P, Tan EEK, Sultana R et al (2020) Critical illness epidemiology and mortality risk in pediatric oncology. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28242

    Article  PubMed  Google Scholar 

  18. Sayed HA, Ali AM, Elzembely MM (2018) Can pediatric risk of mortality score (PRISM III) be used effectively in initial evaluation and follow-up of critically Ill cancer patients admitted to pediatric oncology intensive care unit (POICU)? a prospective study, in a tertiary cancer center in Egypt. J Pediatr Hematol Oncol 40:382–386. https://doi.org/10.1097/MPH.0000000000001033

    Article  PubMed  Google Scholar 

  19. Porta M (2008) A dictionary of epidemiology, 5th edn. Oxford University Press, New York

    Google Scholar 

  20. Heneghan JA, Pollack MM (2017) Morbidity. Pediatr Clin North Am 64:1147–1165. https://doi.org/10.1016/j.pcl.2017.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holding EZ, Turner EM, Hall TA et al (2021) The association between functional status and health-related quality of life following discharge from the pediatric intensive care unit. Neurocrit Care. https://doi.org/10.1007/s12028-021-01271-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hong Kong Cancer Registry (2021) Cancer incidence among children and adolescents. https://www3.ha.org.hk/cancereg/children.asp. Accessed 22 Aug 2021

  23. Steliarova-Foucher E, Stiller C, Lacour B et al (2005) International classification of childhood cancer, third edition. Cancer 103:1457–1467. https://doi.org/10.1002/cncr.20910

    Article  PubMed  Google Scholar 

  24. O’Brien S, Nadel S, Almossawi O et al (2017) The impact of chronic health conditions on length of stay and mortality in a general PICU. Pediatr Crit Care Med 18:1–7. https://doi.org/10.1097/PCC.0000000000000976

    Article  PubMed  Google Scholar 

  25. University of Leeds and Leicester (2020) PICANET admission schema manual. https://www.picanet.org.uk/wp-content/uploads/sites/25/2022/05/PICANet-Admission-Schema-Manual-v1.9-2022-05.pdf. Accessed 1 Aug 2021

  26. Namachivayam P, Taylor A, Montague T et al (2012) Long-stay children in intensive care. Pediatr Crit Care Med 13:520–528. https://doi.org/10.1097/PCC.0b013e31824fb989

    Article  PubMed  Google Scholar 

  27. Feudtner C, Feinstein JA, Zhong W et al (2014) Pediatric complex chronic conditions classification system version 2: updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr 14:199. https://doi.org/10.1186/1471-2431-14-199

    Article  PubMed  PubMed Central  Google Scholar 

  28. Straney L, Clements A, Parslow RC et al (2013) Paediatric index of mortality 3. Pediatr Crit Care Med 14:673–681. https://doi.org/10.1097/PCC.0b013e31829760cf

    Article  PubMed  Google Scholar 

  29. European Society of Paediatric and Neonatal Intensive Care (2021) Paediatric logistic organ dysfunction 2 score calculator. https://espnic-online.org/Education/Professional-Resources/Paediatric-Logistic-Organ-Dysfunction-2-Score-Calculator. Accessed 20 Jul 2021

  30. Ray S, Rogers L, Pagel C et al (2017) PaO2/FIO2 Ratio derived from the SpO2/FIO2 ratio to improve mortality prediction using the pediatric index of mortality-3 score in transported intensive care admissions*. Pediatr Crit Care Med 18:e131–e136. https://doi.org/10.1097/PCC.0000000000001075

    Article  PubMed  Google Scholar 

  31. McIntosh AM, Tong S, Deakyne SJ et al (2017) Validation of the vasoactive-inotropic score in pediatric sepsis*. Pediatr Crit Care Med 18:750–757. https://doi.org/10.1097/PCC.0000000000001191

    Article  PubMed  PubMed Central  Google Scholar 

  32. University of Leeds and Leicester (2020) PICANet admission dataset definitions manual. https://www.picanet.org.uk/wp-content/uploads/sites/25/2020/11/PICANet-Web-Admission-Dataset-Manual-v5.4_-Nov-2020.pdf. Accessed 20 Aug 2020

  33. National Health Service Digital (2021) Organ system supported. https://datadictionary.nhs.uk/attributes/organ_system_supported.html. Accessed 20 Aug 2021

  34. Jones GAL, Ramnarayan P, Raman S et al (2017) Protocol for a randomised pilot multiple centre trial of conservative versus liberal oxygenation targets in critically ill children (Oxy-PICU). BMJ Open 7:e019253. https://doi.org/10.1136/bmjopen-2017-019253

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics*. Pediatr Crit Care Med 6:2–8. https://doi.org/10.1097/01.PCC.0000149131.72248.E6

    Article  PubMed  Google Scholar 

  36. Meert KL, Banks R, Holubkov R et al (2020) Morbidity and mortality in critically Ill children. II. A qualitative patient-level analysis of pathophysiologies and potential therapeutic solutions*. Crit Care Med 48:799–807. https://doi.org/10.1097/CCM.0000000000004332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pollack MM, Banks R, Holubkov R et al (2020) Long-term outcome of PICU patients discharged with new, functional status morbidity. Pediatr Crit Care Med. https://doi.org/10.1097/PCC.0000000000002590

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pollack MM, Holubkov R, Glass P et al (2009) Functional status scale: new pediatric outcome measure. Pediatrics 124:e18–e28. https://doi.org/10.1542/peds.2008-1987

    Article  PubMed  Google Scholar 

  39. Pollack MM, Banks R, Holubkov R et al (2020) Morbidity and mortality in critically Ill children. I. Pathophysiologies and potential therapeutic solutions. Crit Care Med 48:790–798. https://doi.org/10.1097/CCM.0000000000004331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schneider D, Lemburg P, Sprock I et al (2000) Introduction of the oncological pediatric risk of mortality score (O-PRISM) for ICU support following stem cell transplantation in children. Bone Marrow Transpl 25:1079–1086. https://doi.org/10.1038/sj.bmt.1702403

    Article  CAS  Google Scholar 

  41. Owens C, Mannion D, O’Marcaigh A et al (2011) Indications for admission, treatment and improved outcome of paediatric haematology/oncology patients admitted to a tertiary paediatric ICU. Ir J Med Sci 180:85–89. https://doi.org/10.1007/s11845-010-0634-8

    Article  CAS  PubMed  Google Scholar 

  42. Ha EJ, Kim S, Jin HS et al (2010) Early changes in sofa score as a prognostic factor in pediatric oncology patients requiring mechanical ventilatory support. J Pediatr Hematol Oncol 32:e308–e313. https://doi.org/10.1097/MPH.0b013e3181e51338

    Article  PubMed  Google Scholar 

  43. Parker AM, Sricharoenchai T, Needham DM (2013) Early rehabilitation in the intensive care unit: preventing impairment of physical and mental health. Curr Phys Med Rehabil Rep 1:307–314. https://doi.org/10.1007/s40141-013-0027-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Needham DM (2008) Mobilizing patients in the intensive care unit. JAMA 300:1685. https://doi.org/10.1001/jama.300.14.1685

    Article  CAS  PubMed  Google Scholar 

  45. Thompson JY, Menzies JC, Manning JC et al (2022) Early mobilisation and rehabilitation in the PICU: a UK survey. BMJ Paediatr Open 6:e001300. https://doi.org/10.1136/bmjpo-2021-001300

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tume LN, Valla FV, Joosten K et al (2020) Nutritional support for children during critical illness: European society of pediatric and neonatal intensive care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med 46:411–425. https://doi.org/10.1007/s00134-019-05922-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Trehan A, Viani K, da Cruz LB et al (2020) The importance of enteral nutrition to prevent or treat undernutrition in children undergoing treatment for cancer. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.28378

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zama D, Gori D, Muratore E et al (2021) Enteral versus parenteral nutrition as nutritional support after allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Transpl Cell Ther 27:180.e1-180.e8. https://doi.org/10.1016/j.jtct.2020.11.006

    Article  Google Scholar 

  49. Arends J, Bachmann P, Baracos V et al (2017) ESPEN guidelines on nutrition in cancer patients. Clin Nutr 36:11–48. https://doi.org/10.1016/j.clnu.2016.07.015

    Article  PubMed  Google Scholar 

  50. Bartolo M, Zucchella C, Pace A et al (2012) Early rehabilitation after surgery improves functional outcome in inpatients with brain tumours. J Neurooncol 107:537–544. https://doi.org/10.1007/s11060-011-0772-5

    Article  PubMed  Google Scholar 

  51. Wieczorek B, Burke C, Al-Harbi A et al (2015) Early mobilization in the pediatric intensive care unit: a systematic review. J Pediatr Intensive Care 04:212–217. https://doi.org/10.1055/s-0035-1563386

    Article  Google Scholar 

  52. Lipshutz AKM, Gropper MA (2013) Acquired neuromuscular weakness and early mobilization in the intensive care unit. Anesthesiology 118:202–215. https://doi.org/10.1097/ALN.0b013e31826be693

    Article  PubMed  Google Scholar 

  53. Matics TJ, Pinto NP, Sanchez-Pinto LN (2019) Association of organ dysfunction scores and functional outcomes following pediatric critical illness*. Pediatr Crit Care Med 20:722–727. https://doi.org/10.1097/PCC.0000000000001999

    Article  PubMed  Google Scholar 

  54. Needham DM, Davidson J, Cohen H et al (2012) Improving long-term outcomes after discharge from intensive care unit. Crit Care Med 40:502–509. https://doi.org/10.1097/CCM.0b013e318232da75

    Article  PubMed  Google Scholar 

Download references

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

KKYL, SR, KLH contributed to the concept and design, analysis, and interpretation of data. KKYL contributed to acquisition of data, writing the original draft. All authors contributed to revising it critically for important intellectual content and final approval of the version to be published.

Corresponding author

Correspondence to Karen K. Y. Leung.

Ethics declarations

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Ethical approval

This study was approved by the Hong Kong Children’s Hospital Research Ethics Committee (Reference number: HKCH-REC-2020–070).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, K.K.Y., Ray, S., Chan, G.C.F. et al. Functional outcomes at PICU discharge in hemato-oncology children at a tertiary oncology center in Hong Kong. Int J Clin Oncol 27, 1904–1915 (2022). https://doi.org/10.1007/s10147-022-02244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02244-3

Keywords

Navigation