Skip to main content

Advertisement

Log in

Pre-treatment circulating reproductive hormones levels predict pathological and survival outcomes in breast cancer submitted to neoadjuvant chemotherapy

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the correlation of pre-treatment circulating reproductive hormones levels with pathological and survival outcomes in breast cancer patients received neoadjuvant chemotherapy (NAC).

Methods

Information from 196 premenopausal and 137 postmenopausal breast cancer patients who received NAC were retrospectively analyzed. Treatment response to NAC, with odds ratios (OR) and 95% confidence intervals (95% CI) was estimated using logistic regression adjusted for key confounders. Survival outcomes with hazard ratios (HR) and 95% CI were estimated using Cox regression adjusted for key confounders. The Kaplan–Meier method was applied in the survival analysis.

Results

Premenopausal patients with lower testosterone levels (OR = 0.996, 95% CI 0.992–0.999, P = 0.026), and postmenopausal patients with higher follicle-stimulating hormone (FSH) levels (OR = 1.045, 95% CI 1.014–1.077, P = 0.005) were likely to achieve pathological complete response (pCR). In multivariate survival analysis, the lowest tertile (T) progesterone was associated with worse overall survival (OS) in premenopausal patients (T2 vs T1, HR = 0.113, 95% CI 0.013–0.953, P = 0.045; T3 vs T1, HR = 0.109, 95% CI 0.013–0.916, P = 0.041). Premenopausal patients with the lowest tertile progesterone exhibited worse 3-year OS compared with those with higher tertiles (72.9% vs 97.4%, log-rank, P = 0.007).

Conclusion

Pre-treatment testosterone and FSH are significant independent predictors for pCR to NAC in premenopausal and postmenopausal patients, respectively. Low progesterone levels are correlated with worse OS in premenopausal patients. These findings may provide a theoretical basis for pre-operative endocrine therapy combined with NAC in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

NAC:

Neoadjuvant chemotherapy

OR:

Odds ratio

CI:

Confidence interval

HR:

Hazard ratio

pCR:

Pathological complete response

T:

Tertile

OS:

Overall survival

RFS:

Relapse-free survival

FSH:

Follicle-stimulating hormone

LH:

Luteinizing hormone

SHBG:

 Sex hormone-binding globulin

ER:

Estrogen receptor

PR:

Progesterone receptor

AR:

Androgen receptor

AI:

Aromatase inhibitor

PRL:

Prolactin

DHEAS:

Dehydroepiandrosterone sulfate

FAI:

Free androgen index

HER2:

Human epidermal growth factor receptor 2

IHC:

Immunohistochemistry

CEP17:

Chromosome enumeration probe 17

FISH:

Fluorescence in situ Hybridization

IQR:

Interquartile range

BMI:

Body mass index

GnRH:

Gonadotrophin-releasing hormone

FSHR:

Follicle-stimulating hormone receptor

cCR:

Clinical complete response

cPR:

Clinical partial response

cSD:

Clinical stable disease

cPD:

Clinical progressive disease

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    PubMed  Google Scholar 

  2. Africander D, Storbeck KH (2018) Steroid metabolism in breast cancer: where are we and what are we missing? Mol Cell Endocrinol 466:86–97

    Article  CAS  PubMed  Google Scholar 

  3. Folkerd E, Dowsett M (2013) Sex hormones and breast cancer risk and prognosis. Breast 22(Suppl 2):S38-43

    Article  PubMed  Google Scholar 

  4. Key T, Appleby P, Barnes I et al (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606–616

    Article  CAS  PubMed  Google Scholar 

  5. Missmer SA, Eliassen AH, Barbieri RL et al (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96(24):1856–1865

    Article  CAS  PubMed  Google Scholar 

  6. Woolcott CG, Shvetsov YB, Stanczyk FZ et al (2010) Plasma sex hormone concentrations and breast cancer risk in an ethnically diverse population of postmenopausal women: the Multiethnic Cohort Study. Endocr Relat Cancer 17(1):125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeleniuch-Jacquotte A, Shore RE, Koenig KL et al (2004) Postmenopausal levels of oestrogen, androgen, and SHBG and breast cancer: long-term results of a prospective study. Br J Cancer 90(1):153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaaks R, Rinaldi S, Key TJ et al (2005) Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12(4):1071–1082

    Article  CAS  PubMed  Google Scholar 

  9. Sanchez AM, Flamini MI, Russo E et al (2016) LH and FSH promote migration and invasion properties of a breast cancer cell line through regulatory actions on the actin cytoskeleton. Mol Cell Endocrinol 437:22–34

    Article  CAS  PubMed  Google Scholar 

  10. Kensler KH, Eliassen AH, Rosner BA et al (2019) Pre-diagnostic sex hormone levels and survival among breast cancer patients. Breast Cancer Res Treat 174(3):749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang-Lopez Q, Chalabi N, Abrial C et al (2015) Can pathologic complete response (pCR) be used as a surrogate marker of survival after neoadjuvant therapy for breast cancer? Crit Rev Oncol Hematol 95(1):88–104

    Article  PubMed  Google Scholar 

  12. Chaudhary LN, Wilkinson KH, Kong A (2018) Triple-negative breast cancer: who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am 27(1):141–153

    Article  PubMed  Google Scholar 

  13. Arthur LM, Turnbull AK, Khan LR et al (2017) Pre-operative endocrine therapy. Curr Breast Cancer Rep 9(4):202–209

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mohammadianpanah M, Ashouri Y, Hoseini S et al (2012) The efficacy and safety of neoadjuvant chemotherapy +/- letrozole in postmenopausal women with locally advanced breast cancer: a randomized phase III clinical trial. Breast Cancer Res Treat 132(3):853–861

    Article  CAS  PubMed  Google Scholar 

  15. Torrisi R, Bagnardi V, Rotmensz N et al (2011) Letrozole plus GnRH analogue as preoperative and adjuvant therapy in premenopausal women with ER positive locally advanced breast cancer. Breast Cancer Res Treat 126(2):431–441

    Article  CAS  PubMed  Google Scholar 

  16. Moore HCF, Unger JM, Phillips KA et al (2019) Final analysis of the prevention of early menopause study (POEMS)/SWOG intergroup S0230. J Natl Cancer Inst 111(2):210–213

    Article  PubMed  Google Scholar 

  17. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazouni C, Peintinger F, Wan-Kau S et al (2007) Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol 25(19):2650–2655

    Article  CAS  PubMed  Google Scholar 

  19. Hosmer DW, Lemeshow S (2000) Model-building strategies and methods for logistic regression. In: Shewhart WA, Wilks SS (eds) Applied logistic regression, 2nd edn. John Wiley & Sons, New Jersey, pp 91–142

    Chapter  Google Scholar 

  20. Venturelli E, Orenti A, Fabricio ASC et al (2018) Observational study on the prognostic value of testosterone and adiposity in postmenopausal estrogen receptor positive breast cancer patients. BMC Cancer 18(1):651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Micheli A, Meneghini E, Secreto G et al (2007) Plasma testosterone and prognosis of postmenopausal breast cancer patients. J Clin Oncol 25(19):2685–2690

    Article  CAS  PubMed  Google Scholar 

  22. Berrino F, Pasanisi P, Bellati C et al (2005) Serum testosterone levels and breast cancer recurrence. Int J Cancer 113(3):499–502

    Article  CAS  PubMed  Google Scholar 

  23. Duggan C, Stanczyk F, Campbell K et al (2016) Associations of sex steroid hormones with mortality in women with breast cancer. Breast Cancer Res Treat 155(3):559–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rock CL, Flatt SW, Laughlin GA et al (2008) Reproductive steroid hormones and recurrence-free survival in women with a history of breast cancer. Cancer Epidemiol Biomarkers Prev 17(3):614–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geisler J, Detre S, Berntsen H et al (2001) Influence of neoadjuvant anastrozole (Arimidex) on intratumoral estrogen levels and proliferation markers in patients with locally advanced breast cancer. Clin Cancer Res 7(5):1230–1236

    CAS  PubMed  Google Scholar 

  26. Lønning PE, Geisler J (2008) Aromatase inhibitors: assessment of biochemical efficacy measured by total body aromatase inhibition and tissue estrogen suppression. J Steroid Biochem Mol Biol 108(3–5):196–202

    Article  PubMed  CAS  Google Scholar 

  27. Judd HL, Lucas WE, Yen SS (1974) Effect of oophorectomy on circulating testosterone and androstenedione levels in patients with endometrial cancer. Am J Obstet Gynecol 118(6):793–798

    Article  CAS  PubMed  Google Scholar 

  28. Maroulis GB, Abraham GE (1976) Ovarian and adrenal contributions to peripheral steroid levels in postmenopausal women. Obstet Gynecol 48(2):150–154

    CAS  PubMed  Google Scholar 

  29. Liao DJ, Dickson RB (2002) Roles of androgens in the development, growth, and carcinogenesis of the mammary gland. J Steroid Biochem Mol Biol 80(2):175–189

    Article  CAS  PubMed  Google Scholar 

  30. Choi J, Psarommatis B, Gao YR et al (2014) The role of androgens in experimental rodent mammary carcinogenesis. Breast Cancer Res 16(6):483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Secreto G, Girombelli A, Krogh V (2019) Androgen excess in breast cancer development: implications for prevention and treatment. Endocr Relat Cancer 26(2):R81-r94

    Article  CAS  PubMed  Google Scholar 

  32. Trabert B, Sherman ME, Kannan N et al (2020) Progesterone and breast cancer. Endocr Rev 41(2):320–344

    Article  Google Scholar 

  33. Badwe R, Hawaldar R, Parmar V et al (2011) Single-injection depot progesterone before surgery and survival in women with operable breast cancer: a randomized controlled trial. J Clin Oncol 29(21):2845–2851

    Article  CAS  PubMed  Google Scholar 

  34. Badwe RA, Gregory WM, Chaudary MA et al (1991) Timing of surgery during menstrual cycle and survival of premenopausal women with operable breast cancer. Lancet 337(8752):1261–1264

    Article  CAS  PubMed  Google Scholar 

  35. Bliss RD, Kirby JA, Browell DA et al (1994) Effect of menstrual phase on surgical treatment of breast cancer. Lancet 344(8919):403–404

    CAS  PubMed  Google Scholar 

  36. Wildt L, Häusler A, Marshall G et al (1981) Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109(2):376–385

    Article  CAS  PubMed  Google Scholar 

  37. Furlanetto J, Marmé F, Seiler S et al (2021) Chemotherapy-induced ovarian failure in young women with early breast cancer: prospective analysis of four randomised neoadjuvant/adjuvant breast cancer trials. Eur J Cancer 152:193–203

    Article  CAS  PubMed  Google Scholar 

  38. Perales-Puchalt A, Svoronos N, Rutkowski MR et al (2017) Follicle-stimulating hormone receptor is expressed by most ovarian cancer subtypes and is a safe and effective immunotherapeutic target. Clin Cancer Res 23(2):441–453

    Article  CAS  PubMed  Google Scholar 

  39. Xu Y, Pan D, Zhu C et al (2014) Pilot study of a novel (18)F-labeled FSHR probe for tumor imaging. Mol Imaging Biol 16(4):578–585

    Article  PubMed  Google Scholar 

  40. Radu A, Pichon C, Camparo P et al (2010) Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 363(17):1621–1630

    Article  CAS  PubMed  Google Scholar 

  41. Siraj A, Desestret V, Antoine M et al (2013) Expression of follicle-stimulating hormone receptor by the vascular endothelium in tumor metastases. BMC Cancer 13:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Planeix F, Siraj MA, Bidard FC et al (2015) Endothelial follicle-stimulating hormone receptor expression in invasive breast cancer and vascular remodeling at tumor periphery. J Exp Clin Cancer Res 34(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hong H, Yan Y, Shi S et al (2015) PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm 12(2):403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noci I, Pillozzi S, Lastraioli E et al (2008) hLH/hCG-receptor expression correlates with in vitro invasiveness in human primary endometrial cancer. Gynecol Oncol 111(3):496–501

    Article  CAS  PubMed  Google Scholar 

  45. Mariani S, Salvatori L, Basciani S et al. Expression and cellular localization of follicle-stimulating hormone receptor in normal human prostate, benign prostatic hyperplasia and prostate cancer. J Urol. 2006;175(6):2072–2077; discussion 7.

  46. Zhang X, Tworoger SS, Eliassen AH et al (2013) Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Res Treat 137(3):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Yinan Wu for her contribution to the data collection.

Funding

This work was funded by the National Natural Science Foundation of China (No. 81772979 and 81472658). The funding source had no role in the study design, data collection, data analysis, data interpretation, or the writing of the report.

Author information

Authors and Affiliations

Authors

Contributions

SL and AL are the guarantors of integrity of the entire study; AL, YJ, YW and SL designed the study concepts/study design; AL, YHW, ND, YW, YJ, ZT, YP, YD, and LJ participated in the data acquisition or data analysis/interpretation; AL, YJ, YW and SL participated in the drafting or revising of manuscript for important intellectual content; all authors have approved the final version of submitted manuscript; AL and SL agreed to ensure any questions related to the work are appropriately resolved; AL and YW performed literature research; AL performed statistical analysis; AL participated in the manuscript editing.

Corresponding author

Correspondence to Shengchun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Approval was obtained from the ethics committee of First Affiliated Hospital of Chongqing Medical University (ID: No. 2021-218).

Consent to participate

As this study had a retrospective observational design and the data are anonymous, the requirement for informed consent was waived by the hospital.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 16 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, A., Jin, Y., Wang, Y. et al. Pre-treatment circulating reproductive hormones levels predict pathological and survival outcomes in breast cancer submitted to neoadjuvant chemotherapy. Int J Clin Oncol 27, 899–910 (2022). https://doi.org/10.1007/s10147-022-02141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02141-9

Keywords

Navigation