Skip to main content
Log in

Clinical application of diffusion tensor imaging and fiber tractography in the management of brainstem cavernous malformations: a systematic review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

This study aimed to systematically review the literature to determine the clinical utility and perspectives of diffusion tensor imaging (DTI) in the management of patients with brainstem cavernous malformations (BSCMs). PubMed, Embase, and Cochrane were searched for English-language articles published until May 10, 2021. Clinical studies and case series describing DTI-based evaluation of patients with BSCMs were included. Fourteen articles were included. Preoperative DTI enabled to adjust the surgical approach and choose a brainstem safe entry zone in deep-seated BSCMs. Preoperatively lower fractional anisotropy (FA) of the corticospinal tract (CST) correlated with the severity of CST injury and motor deficits. Postoperatively increased FA and decreased apparent diffusion coefficient (ADC) corresponded with the normalization of the perilesional CST, indicating motor improvement. The positive (PPV) and negative predictive value (NPV) of qualitative DTI ranged from 20 to 75% and from 66.6 to 100%, respectively. The presence of preoperative and postoperative motor deficits was associated with a higher preoperative resting motor threshold (RMT) and lower FA. A higher preoperative CST score was indicative of a lower preoperative and follow-up Medical Research Council (MRC) grade. DTI facilitated the determination of a surgical trajectory with minimized risk of WMTs’ damage. Preoperative FA and RMT might indicate the severity of preoperative and postoperative motor deficits. Preoperative CST score can reliably reflect patients’ preoperative and follow-up motor status. Due to high NPV, normal CST morphology might predict intact neurological outcomes. Contrarily, sparse and relatively low PPV limits the reliable prediction of neurological deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

The data generated during this study are available within the article. Datasets analyzed during the current study preparation are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Abhinav K, Nielsen TH, Singh R et al (2020) Utility of a quantitative approach using diffusion tensor imaging for prognostication regarding motor and functional outcomes in patients with surgically resected deep intracranial cavernous malformations. Neurosurgery 86(5):665–675. https://doi.org/10.1093/neuros/nyz259

    Article  PubMed  Google Scholar 

  2. Abhinav K, Pathak S, Richardson RM et al (2014) Application of high-definition fiber tractography in the management of supratentorial cavernous malformations: a combined qualitative and quantitative approach. Neurosurgery 74(6):668–681. https://doi.org/10.1227/NEU.0000000000000336

    Article  PubMed  Google Scholar 

  3. Abhinav K, Yeh FC, El-Dokla A et al (2014) Use of diffusion spectrum imaging in preliminary longitudinal evaluation of amyotrophic lateral sclerosis: development of an imaging biomarker. Front Hum Neurosci. 8:270. https://doi.org/10.3389/fnhum.2014.00270 (Published 2014 Apr 29)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahn YH, Kim SH, Han BS et al (2006) Focal lesions of the corticospinal tract demonstrated by diffusion tensor imaging in patients with diffuse axonal injury. NeuroRehabilitation 21(3):239–243

    Article  Google Scholar 

  5. Alexander AL, Hasan KM, Lazar M, Tsuruda JS, Parker DL (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45(5):770–780. https://doi.org/10.1002/mrm.1105

    Article  CAS  PubMed  Google Scholar 

  6. Antkowiak L, Rogalska M, Stogowski P, Anuszkiewicz K, Mandera M (2021) Clinical application of diffusion tensor imaging in Chiari malformation type I—advances and perspectives A systematic review. World Neurosurg 152:124–136. https://doi.org/10.1016/j.wneu.2021.06.052

    Article  PubMed  Google Scholar 

  7. Bailey PD, Zacà D, Basha MM et al (2015) Presurgical fMRI and DTI for the prediction of perioperative motor and language deficits in primary or metastatic brain lesions. J Neuroimaging 25(5):776–784. https://doi.org/10.1111/jon.12273

    Article  PubMed  Google Scholar 

  8. Barrow DL, Schuette AJ (2011) Cavernous malformations: a paradigm for progress. Clin Neurosurg 58:27–41. https://doi.org/10.1227/neu.0b013e318226a069

    Article  PubMed  Google Scholar 

  9. Berman J (2009) Diffusion MR tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am 17(2):205–214. https://doi.org/10.1016/j.mric.2009.02.002

    Article  PubMed  Google Scholar 

  10. Brown AP, Thompson BG, Spetzler RF (1996) The two-point method: evaluating brain stem lesions. BNI Q 12:20–24

    Google Scholar 

  11. Cao Z, Lv J, Wei X, Quan W (2010) Appliance of preoperative diffusion tensor imaging and fiber tractography in patients with brainstem lesions. Neurol India 58(6):886–890. https://doi.org/10.4103/0028-3886.73736

    Article  PubMed  Google Scholar 

  12. Cavalcanti DD, Preul MC, Kalani MY, Spetzler RF (2016) Microsurgical anatomy of safe entry zones to the brainstem. J Neurosurg 124:1359–1376

    Article  Google Scholar 

  13. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C (2007) Diffusion tensor imaging and white matter tractography in patients with brainstem lesions. Acta Neurochir (Wien) 149(11):1117–1131. https://doi.org/10.1007/s00701-007-1282-2

    Article  CAS  Google Scholar 

  14. Dammann P, Wrede K, Jabbarli R et al (2017) Of bubbles and layers: which cerebral cavernous malformations are most difficult to dissect from surrounding eloquent brain tissue? Neurosurgery 81(3):498–503. https://doi.org/10.1093/neuros/nyx025

    Article  PubMed  Google Scholar 

  15. DaSilva AF, Tuch DS, Wiegell MR, Hadjikhani N (2003) A primer on diffusion tensor imaging of anatomical substructures. Neurosurg Focus. 15(1):E4. https://doi.org/10.3171/foc.2003.15.1.4 (Published 2003 Jul 15)

    Article  PubMed  Google Scholar 

  16. Faraji AH, Abhinav K, Jarbo K et al (2015) Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience. J Neurosurg 123(5):1133–1144. https://doi.org/10.3171/2014.12.JNS142169

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Miranda JC, Pathak S, Engh J et al (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71(2):430–453. https://doi.org/10.1227/NEU.0b013e3182592faa

    Article  PubMed  Google Scholar 

  18. Flores BC, Whittemore AR, Samson DS, Barnett SL (2015) The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg 122(3):653–662. https://doi.org/10.3171/2014.11.JNS13680

    Article  PubMed  Google Scholar 

  19. Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T (2012) A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage 62(3):1600–1609. https://doi.org/10.1016/j.neuroimage.2012.05.059

    Article  CAS  PubMed  Google Scholar 

  20. Garcia RM, Ivan ME, Lawton MT (2015) Brainstem cavernous malformations: surgical results in 104 patients and a proposed grading system to predict neurological outcomes. Neurosurgery 76(3):265–278. https://doi.org/10.1227/NEU.0000000000000602

    Article  PubMed  Google Scholar 

  21. Greenberg AS, Verstynen T, Chiu YC, Yantis S, Schneider W, Behrmann M (2012) Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J Neurosci 32(8):2773–2782. https://doi.org/10.1523/JNEUROSCI.5419-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gross BA, Batjer HH, Awad IA, Bendok BR (2009) Brainstem cavernous malformations. Neurosurgery 64(5):E805–E818. https://doi.org/10.1227/01.NEU.0000343668.44288.18

    Article  PubMed  Google Scholar 

  23. Gross BA, Lin N, Du R, Day AL (2011) The natural history of intracranial cavernous malformations. Neurosurg Focus 30(6):E24. https://doi.org/10.3171/2011.3.FOCUS1165

    Article  PubMed  Google Scholar 

  24. Guleria S, Gupta RK, Saksena S et al (2008) Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging. J Neurosci Res 86(10):2271–2280. https://doi.org/10.1002/jnr.21664

    Article  CAS  PubMed  Google Scholar 

  25. Jang SH, Kwon YH (2020) The relationship between consciousness and the ascending reticular activating system in patients with traumatic brain injury. BMC Neurol. 20(1):375. https://doi.org/10.1186/s12883-020-01942-7 (Published 2020 Oct 14)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jang SH, Yeo SS (2016) Injury of the lower ascending reticular activating system in patients with pontine hemorrhage: diffusion tensor imaging study. Medicine (Baltimore) 95(50):e5527. https://doi.org/10.1097/MD.0000000000005527

    Article  CAS  Google Scholar 

  27. Januszewski J, Albert L, Black K, Dehdashti AR (2016) The usefulness of diffusion tensor imaging and tractography in surgery of brainstem cavernous malformations. World Neurosurg 93:377–388. https://doi.org/10.1016/j.wneu.2016.06.019

    Article  PubMed  Google Scholar 

  28. Jarbo K, Verstynen T, Schneider W (2012) In vivo quantification of global connectivity in the human corpus callosum. Neuroimage 59(3):1988–1996. https://doi.org/10.1016/j.neuroimage.2011.09.056

    Article  PubMed  Google Scholar 

  29. Khan KA, Jain SK, Sinha VD, Sinha J (2019) Preoperative diffusion tensor imaging: a landmark modality for predicting the outcome and characterization of supratentorial intra-axial brain tumors [published online ahead of print, 2019 Jan 10]. World Neurosurg. S1878–8750(19)30014–2. https://doi.org/10.1016/j.wneu.2018.12.146

  30. Kim DS, Park YG, Choi JU, Chung SS, Lee KC (1997) An analysis of the natural history of cavernous malformations. Surg Neurol 48(1):9–18. https://doi.org/10.1016/s0090-3019(96)00425-9

    Article  CAS  PubMed  Google Scholar 

  31. Kovanlikaya I, Firat Z, Kovanlikaya A et al (2011) Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using Diffusion Tensor Imaging (DTI) and tractography at 3T. Eur J Radiol 77(3):383–391. https://doi.org/10.1016/j.ejrad.2009.08.012

    Article  PubMed  Google Scholar 

  32. Laundre BJ, Jellison BJ, Badie B, Alexander AL, Field AS (2005) Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data. AJNR Am J Neuroradiol 26(4):791–796

    PubMed  PubMed Central  Google Scholar 

  33. Lazar M, Alexander AL, Thottakara PJ, Badie B, Field AS (2006) White matter reorganization after surgical resection of brain tumors and vascular malformations. AJNR Am J Neuroradiol 27(6):1258–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24(3):478–488. https://doi.org/10.1002/jmri.20683

    Article  PubMed  Google Scholar 

  35. Leclercq D, Delmaire C, de Champfleur NM, Chiras J, Lehéricy S (2011) Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am 22(2):253–ix. https://doi.org/10.1016/j.nec.2010.11.004

    Article  PubMed  Google Scholar 

  36. Leroy HA, Lacoste M, Maurage CA et al (2020) Anatomo-radiological correlation between diffusion tensor imaging and histologic analyses of glial tumors: a preliminary study. Acta Neurochir (Wien) 162(7):1663–1672. https://doi.org/10.1007/s00701-020-04323-8

    Article  Google Scholar 

  37. Li D, Jiao YM, Wang L et al (2018) Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial. J Neurosurg 130(1):286–301. https://doi.org/10.3171/2017.8.JNS17854

    Article  PubMed  Google Scholar 

  38. Lin Y, Lin F, Kang D, Jiao Y, Cao Y, Wang S (2018) Supratentorial cavernous malformations adjacent to the corticospinal tract: surgical outcomes and predictive value of diffusion tensor imaging findings. J Neurosurg 128(2):541–552. https://doi.org/10.3171/2016.10.JNS161179

    Article  PubMed  Google Scholar 

  39. Little DM, Kraus MF, Joseph J et al (2010) Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology 74(7):558–564. https://doi.org/10.1212/WNL.0b013e3181cff5d5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15(7–8):468–480. https://doi.org/10.1002/nbm.781

    Article  PubMed  Google Scholar 

  42. Oouchi H, Yamada K, Sakai K et al (2007) Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers. AJNR Am J Neuroradiol 28(6):1102–1106. https://doi.org/10.3174/ajnr.A0488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ordóñez-Rubiano EG, Johnson JM, Younus I et al (2019) Recovery of consciousness after a brainstem cavernous malformation hemorrhage: a descriptive study of preserved reticular activating system with tractography. J Clin Neurosci 59:372–377. https://doi.org/10.1016/j.jocn.2018.10.074

    Article  PubMed  Google Scholar 

  44. Phillips NS, Sanford RA, Helton KJ et al (2005) Diffusion tensor imaging of intraaxial tumors at the cervicomedullary and pontomedullary junctions. Report of two cases. J Neurosurg 103(6 Suppl):557–562. https://doi.org/10.3171/ped.2005.103.6.0557

    Article  PubMed  Google Scholar 

  45. Pierpaoli C, Barnett A, Pajevic S et al (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13(6 Pt 1):1174–1185. https://doi.org/10.1006/nimg.2001.0765

    Article  CAS  PubMed  Google Scholar 

  46. Porter RW, Detwiler PW, Spetzler RF et al (1999) Cavernous malformations of the brainstem: experience with 100 patients. J Neurosurg 90(1):50–58. https://doi.org/10.3171/jns.1999.90.1.0050

    Article  CAS  PubMed  Google Scholar 

  47. Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A (2012) Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 32(8):1515–1524. https://doi.org/10.1038/jcbfm.2012.37

    Article  PubMed  PubMed Central  Google Scholar 

  48. Reich DS, Zackowski KM, Gordon-Lipkin EM et al (2008) Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. AJNR Am J Neuroradiol 29(2):333–339. https://doi.org/10.3174/ajnr.A0788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santos AN, Rauschenbach L, Darkwah Oppong M, et al (2020) Assessment and validation of proposed classification tools for brainstem cavernous malformations [published online ahead of print, 2020 Oct 16]. J Neurosurg. 1–7. https://doi.org/10.3171/2020.6.JNS201585

  50. Sedrak M, Gorgulho A, Frew A, Behnke E, DeSalles A, Pouratian N (2011) Diffusion tensor imaging and colored fractional anisotropy mapping of the ventralis intermedius nucleus of the thalamus. Neurosurgery 69(5):1124–1130. https://doi.org/10.1227/NEU.0b013e3182296a42

    Article  PubMed  Google Scholar 

  51. Skrap M, Vescovi MC, Pauletto G et al (2018) Supratentorial cavernous malformations involving the corticospinal tract and sensory motor cortex: treatment strategies, surgical considerations, and outcomes. Oper Neurosurg (Hagerstown) 15(5):483–497. https://doi.org/10.1093/ons/opx281

    Article  Google Scholar 

  52. Topcuoglu OM, Yaltirik CK, Firat Z, et al (2019) Limited positive predictive value of diffusion tensor tractography in determining clinically relevant white matter damage in brain stem cavernous malformations: a retrospective study in a single center surgical cohort [published online ahead of print, 2019 Sep 17]. J Neuroradiol. S0150–9861(19)30438–9. https://doi.org/10.1016/j.neurad.2019.07.005

  53. Ulrich NH, Ahmadli U, Woernle CM, Alzarhani YA, Bertalanffy H, Kollias SS (2014) Diffusion tensor imaging for anatomical localization of cranial nerves and cranial nerve nuclei in pontine lesions: initial experiences with 3T-MRI. J Clin Neurosci 21(11):1924–1927. https://doi.org/10.1016/j.jocn.2014.03.027

    Article  PubMed  Google Scholar 

  54. Ulrich NH, Kockro RA, Bellut D et al (2014) Brainstem cavernoma surgery with the support of pre- and postoperative diffusion tensor imaging: initial experiences and clinical course of 23 patients. Neurosurg Rev 37(3):481–492. https://doi.org/10.1007/s10143-014-0550-x

    Article  PubMed  Google Scholar 

  55. Vargas P, Gaudron M, Valabrègue R et al (2013) Assessment of corticospinal tract (CST) damage in acute stroke patients: comparison of tract-specific analysis versus segmentation of a CST template. J Magn Reson Imaging 37(4):836–845. https://doi.org/10.1002/jmri.23870

    Article  PubMed  Google Scholar 

  56. Verstynen TD, Badre D, Jarbo K, Schneider W (2012) Microstructural organizational patterns in the human corticostriatal system. J Neurophysiol 107(11):2984–2995. https://doi.org/10.1152/jn.00995.2011

    Article  PubMed  PubMed Central  Google Scholar 

  57. Verstynen T, Jarbo K, Pathak S, Schneider W (2011) In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol 105(1):336–346. https://doi.org/10.1152/jn.00698.2010

    Article  PubMed  Google Scholar 

  58. Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC (2013) Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex 23(10):2347–2356. https://doi.org/10.1093/cercor/bhs225

    Article  PubMed  Google Scholar 

  59. Yao Y, Ulrich NH, Guggenberger R, Alzarhani YA, Bertalanffy H, Kollias SS (2015) Quantification of corticospinal tracts with diffusion tensor imaging in brainstem surgery: prognostic value in 14 consecutive cases at 3T magnetic resonance imaging. World Neurosurg 83(6):1006–1014. https://doi.org/10.1016/j.wneu.2015.01.045

    Article  PubMed  Google Scholar 

  60. Yeh FC, Tang PF, Tseng WY (2013) Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke. Neuroimage Clin 2:912–921. https://doi.org/10.1016/j.nicl.2013.06.014 (Published 2013 Jun 29)

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng WY (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One. 8(11):e80713. https://doi.org/10.1371/journal.pone.0080713 (Published 2013 Nov 15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeo SS, Kim SH, Ahn YH, Son SM, Jang SH (2011) Anatomical location of the pedunculopontine nucleus in the human brain: diffusion tensor imaging study. Stereotact Funct Neurosurg 89(3):152–156. https://doi.org/10.1159/000324890

    Article  PubMed  Google Scholar 

  63. Zdunczyk A, Roth F, Picht T, Vajkoczy P (2020) Functional dti tractography in brainstem cavernoma surgery. J Neurosurg. 1–10. https://doi.org/10.3171/2020.7.jns20403

Download references

Author information

Authors and Affiliations

Authors

Contributions

Final version of the manuscript has been approved by all authors. Study concept and design: MR. Data collection and interpretation: MR, LA. Writing the article: MR, LA. Critical manuscript revision: MR, LA, MM. Supervision: MM.

Corresponding author

Correspondence to Marta Rogalska.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogalska, M., Antkowiak, L. & Mandera, M. Clinical application of diffusion tensor imaging and fiber tractography in the management of brainstem cavernous malformations: a systematic review. Neurosurg Rev 45, 2027–2040 (2022). https://doi.org/10.1007/s10143-022-01759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-022-01759-7

Keywords

Navigation