Skip to main content
Log in

Transpedicular 3D endoscope-assisted thoracic corpectomy for separation surgery in spinal metastases: feasibility of the technique and preliminary results of a promising experience

  • Technical Note
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Surgery for spinal metastases has undergone multiple transformations in terms of surgical technique. The need for a more aggressive surgical strategy for local control of the disease, given the advances in radiosurgery and immunotherapy, has met the incorporation of many different technological adjuncts. Separation surgery has become one of the main targets to achieve for surgeons in the treatment of spinal metastases. In this paper a prospective series of 3D endoscope-assisted transpedicular thoracic corpectomies is described. Adult patients with a diagnosis of single-level thoracic metastases requiring surgery for epidural compression were included. Data recorded for each case concerned patient demographics, surgical technique, clinical, radiological and surgical data, intra- and postoperative complications, follow-up. The goal of this study was to verify the achievement of separation surgery with this technique, while confirming the safety and feasibility of the procedure. A total number of nine patients were treated from January to April 2019 with a 3D endoscope-assisted procedure. A circumferential bilateral decompression was achieved in seven cases, while monolateral in the other two. A proper separation between the tumor and the spinal cord was achieved in all cases as confirmed by imaging. Axial pain always improved after the procedure as well as neurological functions, when compromised before surgery. No intra-operative and postoperative complications were recorded. Mean hospital stay was 4 days after surgery with early mobilization. At last follow-up no local recurrences were registered. According to preliminary results, the transpedicular 3D endoscope-assisted approach for corpectomies appeared to be a safe and effective technique to achieve proper circumferential decompression and valid separation surgery in thoracic metastases, potentially decreasing the need for costotransversectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barzilai O, McLaughlin L, Amato MK, Reiner AS, Ogilvie SQ, Yamada Y et al (2018) Minimal access surgery for spinal metastases: prospective evaluation of a treatment algorithm using patient-reported outcomes. World Neurosurg 120:e889–e901

    PubMed  PubMed Central  Google Scholar 

  2. Barzilai O, Fisher CG, Bilsky MH (2018) State of the art treatment of spinal metastatic disease. Neurosurgery. 82(6):757–769

    PubMed  Google Scholar 

  3. Spratt DE, Beeler WH, de Moraes FY, Rhines LD, Gemmete JJ, Chaudhary N et al (2017) An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. Lancet Oncol 18(12):e720–e730

    PubMed  Google Scholar 

  4. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ et al (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366:643–648

    PubMed  Google Scholar 

  5. Kim JM, Losina E, Bono CM, Schoenfeld AJ, Collins JE, Katz JN et al (2012) Clinical outcome of metastatic spinal cord compression treated with surgical excision ± radiation versus radiation therapy alone: a systematic review of literature. Spine (Phila Pa 1976) 37(1):78–84

    CAS  Google Scholar 

  6. Cofano F, Monticelli M, Ajello M, Zenga F, Marengo N, Di Perna G et al (2019) The targeted therapies era beyond the surgical point of view: what spine surgeons should know before approaching spinal metastases. Cancer Control. https://doi.org/10.1177/1073274819870549

    Google Scholar 

  7. Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP et al (2010) Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine 13(3):324–328

    PubMed  Google Scholar 

  8. Wong DA, Fornasier VL, Macnab I (1990) Spinal metastases. Spine. 15(1):1–4

    CAS  PubMed  Google Scholar 

  9. Klimo P Jr, Schmidt MH (2004) Surgical management of spinal metastases. Oncologist. 9(2):188–196

    PubMed  Google Scholar 

  10. North RB, Larocca VR, Schwartz J et al (2005) Surgical management of spinal metastases: analysis of prognostic factors during a 10-year experience. J Neurosurg Spine 2(5):564–573

    PubMed  Google Scholar 

  11. Sinson GP, Zager EL (1992) Metastases and spinal cord compression. N Engl J Med 327(27):1953–1955 author reply 1954-1955

    CAS  PubMed  Google Scholar 

  12. Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T (2001) Surgical strategy for spinal metastases. Spine. 26(3):298–306

    CAS  PubMed  Google Scholar 

  13. Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J (2005) A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine. 30(19):2186–2191

    PubMed  Google Scholar 

  14. Yamada Y, Katsoulakis E, Laufer I et al (2017) The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery. Neurosurg Focus 42(1):E6

    PubMed  PubMed Central  Google Scholar 

  15. Yamada Y, Lovelock DM, Yenice KM et al (2005) Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report. Int J Radiat Oncol Biol Phys 62(1):53–61

    PubMed  Google Scholar 

  16. Gerszten PC, Burton SA, Ozhasoglu C, Welch WC (2007) Radiosurgery for spinal metastases. Spine. 32(2):193–199

    PubMed  Google Scholar 

  17. Ho JC, Tang C, Deegan BJ et al (2016) The use of spine stereotactic radiosurgery for oligometastatic disease. J Neurosurg Spine 25(2):239–247

    PubMed  Google Scholar 

  18. Bilsky MH, Laufer I, Burch S (2009) Shifting paradigms in the treatment of metastatic spine disease. Spine. 34(22 suppl):S101–S107

    PubMed  Google Scholar 

  19. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH et al (2010) A novel classi cation system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. Spine (Phila Pa 1976) 35:E1221–E1229

    Google Scholar 

  20. Joaquim AF, Powers A, Laufer I, Bilsky MH (2015) An update in the management of spinal metastases. Arq Neuropsiquiatr 73(9):795–802

    PubMed  Google Scholar 

  21. Laufer I, Iorgulescu JB, Chapman T et al (2013) Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine 18(3):207–214

    PubMed  PubMed Central  Google Scholar 

  22. Moulding HD, Elder JB, Lis E et al (2010) Local disease control after decompressive surgery and adjuvant high-dose single-fraction radiosurgery for spine metastases. J Neurosurg Spine 13(1):87–93

    PubMed  Google Scholar 

  23. Rock JP, Ryu S, Shukairy MS et al (2006) Postoperative radiosurgery for malignant spinal tumors. Neurosurgery. 58(5):891–898 discussion 891-898

    PubMed  Google Scholar 

  24. Goodwin CR, Abu-Bonsrah N, Rhines LD, Verlaan JJ, Bilsky MH, Laufer I et al (2016) Molecular markers and targeted therapeutics in metastatic tumors of the spine: changing the treatment paradigms. Spine (Phila Pa 1976) 41(Suppl 20):S218–S223

    Google Scholar 

  25. Cappuccio M, Gasbarrini A, Van Urk P, Bandiera S, Boriani S (2008) Spinal metastasis: a retrospective study validating the treatment algorithm. Eur Rev Med Pharmacol Sci 12(3):155–160

    CAS  PubMed  Google Scholar 

  26. Laufer I, Rubin DG, Lis E et al (2013) The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 18(6):744–751

    PubMed  PubMed Central  Google Scholar 

  27. Lovelock DM, Zhang Z, Jackson A et al (2010) Correlation of local failure with measures of dose insufficiency in the high-dose single-fraction treatment of bony metastases. Int J Radiat Oncol Biol Phys 77(4):1282–1287

    PubMed  PubMed Central  Google Scholar 

  28. Yamada Y, Bilsky MH, Lovelock DM et al (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71(2):484–490

    PubMed  Google Scholar 

  29. Al-Omair A, Masucci L, Masson-Cote L et al (2013) Surgical resection of epidural disease improves local control following postoperative spine stereotactic body radiotherapy. Neuro-Oncology 15(10):1413–1419

    PubMed  PubMed Central  Google Scholar 

  30. Siegal T, Siegal T, Robin G, Lubetzki-Korn I, Fuks Z (1982) Anterior decompression of the spine for metastatic epidural cord compression: a promising avenue of therapy? Ann Neurol 11:28–34

    CAS  PubMed  Google Scholar 

  31. Harrington KD (1984) Anterior cord decompression and spinal stabilization for patients with metastatic lesions of the spine. J Neurosurg 61:107–117

    CAS  PubMed  Google Scholar 

  32. Sundaresan N, Shah J, Foley KM, Rosen G (1984) An anterior surgical approach to the upper thoracic vertebrae. J Neurosurg 61:686–690

    CAS  PubMed  Google Scholar 

  33. Overby MC, Rothman AS (1985) Anterolateral decompression for metastatic epidural spinal cord tumors. Results of a modified costotransversectomy approach. J Neurosurg 62:344–348

    CAS  PubMed  Google Scholar 

  34. Akeyson EW, McCutcheon IE (1996) Single-stage posterior vertebrectomy and replacement combined with posterior instrumentation for spinal metastasis. J Neurosurg 85:211–220

    CAS  PubMed  Google Scholar 

  35. Lubelski D, Abdullah KG, Steinmetz MP, Masters F, Benzel EC, Mroz TE et al (2013) Lateral extracavitary, costotransversectomy, and transthoracic thoracotomy approaches to the thoracic spine: review of techniques and complications. J Spinal Disord Tech 26(4):222–232

    PubMed  Google Scholar 

  36. Cybulski GR, Stone JL, Opesanmi O (1991) Spinal cord decompression via a modified costotransversectomy approach combined with posterior instrumentation for management of metastatic neoplasms of the thoracic spine. Surg Neurol 35:280–285

    CAS  PubMed  Google Scholar 

  37. Cahill DW, Kumar R (1999) Palliative subtotal vertebrectomy with anterior and posterior reconstruction via a single posterior approach. J Neurosurg 90:42–47

    CAS  PubMed  Google Scholar 

  38. Weller SJ, Rossitch E Jr (1995) Unilateral posterolateral decompression without stabilization for neurological palliation of symptomatic spinal metastasis in debilitated patients. J Neurosurg 82:739–744

    CAS  PubMed  Google Scholar 

  39. Vaccaro A, Albert T (2009) Spine surgery: tricks of the trade. Thieme Medical Publishers, New York

    Google Scholar 

  40. Wiggins GC, Mirza S, Bellabarba C, West GA, Chapman JR, Shaffrey CI (2001) Perioperative complications with costotransversectomy and anterior approaches to thoracic and thoracolumbar tumors. Neurosurg Focus 11(6):e4

    CAS  PubMed  Google Scholar 

  41. Zhou RP, Mummaneni PV, Chen KY, Lau D, Cao K, Amara D et al (2019) Outcomes of posterior thoracic corpectomies for metastatic spine tumors: An Analysis of 90 Patients. World Neurosurg 123:e371–e378

    PubMed  Google Scholar 

  42. Archavlis E, Schwandt E, Kosterhon M, Gutenberg A, Ulrich P, Nimer A et al (2016) A modified microsurgical endoscopic-assisted transpedicular corpectomy of the thoracic spine based on virtual 3-Dimensional planning. World Neurosurg 91:424–433

    PubMed  Google Scholar 

  43. Turel MK, Chacko AG (2018) Endoscopic partial cervical corpectomy - opening a new door to create a wider window. Neurol India 66(2):452–453

    PubMed  Google Scholar 

  44. Yadav YR, Ratre S, Parihar V, Dubey A, Dubey MN (2018) Endoscopic partial corpectomy using anterior decompression for cervical myelopathy. Neurol India 66(2):444–451

    PubMed  Google Scholar 

  45. Cofano F, Zenga F, Mammi M, Altieri R, Marengo N, Ajello M et al (2019) Intraoperative neurophysiological monitoring during spinal surgery: technical review in open and minimally invasive approaches. Neurosurg Rev 42(2):297–307

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cofano.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed consent

The authors declare that an informed consent was obtained before surgery.

Additional information

This study was supported by Ministero dell’Istruzione, dell’Università e della Ricerca—MIUR project “Dipartimenti di eccellenza 2018-2022”.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cofano, F., Di Perna, G., Marengo, N. et al. Transpedicular 3D endoscope-assisted thoracic corpectomy for separation surgery in spinal metastases: feasibility of the technique and preliminary results of a promising experience. Neurosurg Rev 43, 351–360 (2020). https://doi.org/10.1007/s10143-019-01204-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-019-01204-2

Keywords

Navigation