Skip to main content
Log in

Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

References

  • Achary VMM, Reddy MK (2021) CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Sci Rep 11:21941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal S, Mangrauthia SK, Sarla N (2015) Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar x Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant and Soil 396:137–150

    Article  CAS  Google Scholar 

  • Ahmad BHS (2022) CRISPR/Cas9 for rice crop improvement: recent progress, limitations, and prospects. Modern Techniques of Rice Crop Production

    Google Scholar 

  • Alam M, Chen Y, Li P, Lou G, Zhou H, Wang L, Liu R, Chen P, Zhou Y, Gao G, Tai D, Zhang X, He Y (2020) Ghd7 is a negative regulator of zinc concentration in brown rice. Molecular Breeding 40:110

    Article  CAS  Google Scholar 

  • Alauddina, M., Islama, J., Shirakawaa, H., Kosekib, T., Ardiansyahc KM and Komaia, M. (2017) Rice bran as a functional food: an overview of the conversion of rice bran into a superfood/functional food. In Superfood and Functional Food - An Overview of Their Processing and Utilization (Waisundara, V. and Shiomi, N. eds), pp. 291-305 Books on Demand.

    Google Scholar 

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar× Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Aqib ZEB, Ahmad S, Tabbasum J, Sheng Z, Peisong HU (2022) Rice grain yield and quality improvement via CRISPR/Cas9 system: an updated review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50(3):12388

    Article  Google Scholar 

  • Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR (2021) Deciphering the role of microRNAs during. Physiol Mol Biol Plants 27:633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asad Riaz FK, Ahmad I, Ahmad S, Farooq A, Madsen CK, Brinch-Pedersen H et al (2022) New hope for genome editing in cultivated grasses: CRISPR variants and application. Front Plant Sci 13:866121

    Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Asmamaw M, Zawdie B (2021) Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics 15:353–361

    PubMed  PubMed Central  Google Scholar 

  • Awasthi JP, Chandra T, Mishra S, Parmar S, Shaw BP, Nilawe PD, Chauhan NK, Sahoo S, Panda SK (2019) Identification and characterization of drought responsive miRNAs in a drought tolerant upland rice cultivar KMJ 1-12-3. Plant Physiol Biochem 137:62–74

    Article  CAS  PubMed  Google Scholar 

  • Baldrich P, Campo S, Wu MT, Liu TT, Hsing YI, San Segundo B (2015) MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 12:847–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Balyan S, Kansal S, Jajo R, Behere PR, Chatterjee R, Raghuvanshi S (2023) Delineating the tissue-mediated drought stress governed tuning of conserved miR408 and its targets in rice. Funct Integr Genomics 23:187

    Article  CAS  PubMed  Google Scholar 

  • Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, Jain A, Budak H, Varshney RK, Kudapa H (2021) Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Funct Integr Genomics 21(3-4):313–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo S, Sánchez-Sanuy F, Camargo-Ramírez R, Gómez-Ariza J, Baldrich P, Campos-Soriano L, Soto-Suárez M, San Segundo B (2021) A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. Plant Biotechnol J 19:1798–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardi T, Murovec J, Bakhsh A, Boniecka J, Bruegmann T, Bull SE, Eeckhaut T, Fladung M, Galovic V, Linkiewicz A, Lukan T, Mafra I, Michalski K, Kavas M, Nicolia A, Nowakowska J, Sági L, Sarmiento C, Yıldırım K et al (2023) CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2023.05.012

  • Che J, Yamaji N, Ma JF (2021) Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol 230:1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zheng G, Qu M, Wang Y, Lyu MA, Zhu XG (2021a) Knocking out negative regulator of photosynthesis 1 increases rice leaf photosynthesis and biomass production in the field. J Exp Bot 72:1836–1849

  • Chen J, Gao H, Zheng XM, Jin M, Weng JF, Ma J, Ren Y, Zhou K, Wang Q, Wang J, Wang JL, Zhang X, Cheng Z, Wu C, Wang H, Wan JM (2015) An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant J 83:427–438

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Łyskowski A, Jaremko Ł, Jaremko M (2021b) Genetic and molecular factors determining grain weight in rice. Front Plant Sci 12:605799

  • Chen Y, Fan Y, Yang W, Ding G, Xie J, Zhang F (2022) Development and verification of SSR markers from drought stress-responsive miRNAs in Dongxiang wild rice (Oryza rufipogon Griff.). Funct Integr Genomics 22:1153–1157

    Article  PubMed  Google Scholar 

  • Chung PJ, Chung H, Oh N, Choi J, Bang SW, Jung SE, Jung H, Shim JS, Kim JK (2020) Efficiency of recombinant CRISPR/rCas9-mediated miRNA gene editing in rice. Int J Mol Sci 21

  • Connorton JM, Balk J, Rodríguez-Celma J (2017) Iron homeostasis in plants–a brief overview. Metallomics 9:813–823

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Wang J, Yang X, Lu H, Miao X, Shi Z (2018) Modulation of plant architecture by the miR156f–OsSPL7–OsGH3. 8 pathway in rice. J Exp Bot 69(21):5117–5130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dima O, Heyvaert Y, Inzé D (2022) Interactive database of genome editing applications in crops and future policy making in the European Union. Trends Plant Sci 27:746–748

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177:1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Zhu J, Zhao D, Liu Q, Yang Q, Zhang T (2021) Targeting. Front Plant Sci 12:705834

    Article  PubMed  PubMed Central  Google Scholar 

  • Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants potential as targets for crop improvement and protection. Front Plant Sci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong S, Dong X, Han X, Zhang F, Zhu Y, Xin X, Wang Y, Hu Y, Yuan D, Wang J, Huang Z, Niu F, Hu Z, Yan P, Cao L, He H, Fu J, Xin Y, Tan Y et al (2021) OsPDCD5 negatively regulates plant architecture and grain yield in rice. Proc Natl Acad Sci U S A 118:e2018799118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694

    Article  CAS  PubMed  Google Scholar 

  • El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci 11

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Fiaz S, Ahmad S, Noor MA, Wang X, Younas A, Riaz A, Ali F (2019) Applications of the CRISPR/Cas9 system for rice grain quality improvement: perspectives and opportunities. Int J Mol Sci 20

  • Fan T, Li X, Yang W, Xia K, Ouyang J, Zhang M (2015) Rice osa-miR171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressing four OsHAM transcription factors. PLoS One 10:e0125833

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers BC (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci U S A 113:15144–15149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank T, Habernegg R, Yuan F-J, Shu Q-Y, Engel K-H (2009) Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean. J Food Composit Anal 22(4):278–284

    Article  CAS  Google Scholar 

  • Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S (2015) Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2:15196

    Article  PubMed  Google Scholar 

  • Gao Q, Li G, Sun H, Xu M, Wang H, Ji J, Wang D, Yuan C, Zhao X (2020) Targeted mutagenesis of the rice FW 2.2-like gene family using the CRISPR/Cas9 system reveals OsFWL4 as a regulator of tiller number and plant yield in rice. Int J Mol Sci 21:809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B (2015) An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8:1635–1650

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566

    Article  PubMed  Google Scholar 

  • Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX (2020) Acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell 32:2763–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heang D, Sassa H (2012) Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One 7:e31325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y (2021) Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to Phytophthora infestans. Phytopathology 111:1008–1016

  • Hu Z, Lu SJ, Wang MJ, He H, Sun L, Wang H, Liu XH, Jiang L, Sun JL, Xin X, Kong W, Chu C, Xue HW, Yang J, Luo X, Liu JX (2018) A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant 11:736–749

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Z, Zhao D (2016) Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep 6:29938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y (2017) Wide and thick grain 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J 91:849–860

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  PubMed  Google Scholar 

  • Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience 67:386–391

    Article  Google Scholar 

  • Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C (2017) NOG1 increases grain production in rice. Nat Commun 8:1497

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711

    Article  CAS  PubMed  Google Scholar 

  • Islam W, Tauqeer A, Waheed A, Zeng F (2022) MicroRNA mediated plant responses to nutrient stress. Int J Mol Sci:23

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23:4185–4207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing W, Zhang X, Sun W, Hou X, Yao Z, Zhu Y (2015) CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells. Biomed Res Int 2015:326042

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Ma X, Zhao S, Tang Y, Liu F, Gu P, Fu Y, Zhu Z, Cai H, Sun C, Tan L (2019) The APETALA2-like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell 31:17–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Chai Y, Qiao D, Wang J, Xin C, Sun W, Cao Z, Zhang Y, Zhou Y, Wang XC, Chen QJ (2022) Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS. Mol Plant 15:1646–1649

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmakar A, Bhattacharya S, Sengupta S, Ali N, Sarkar SN, Datta K, Datta SK (2020) RNAi-mediated silencing of ITPK gene reduces phytic acid content, alters transcripts of phytic acid biosynthetic genes, and modulates mineral distribution in rice seeds. Rice Science 27(4):315–328

    Article  Google Scholar 

  • Kaur R, Bhunia RK, Rajam MV (2020) MicroRNAs as potential targets for improving rice yield via plant architecture modulation: Recent studies and future perspectives. J Biosci 45

  • Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51:47–57

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK (2012) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69:81–91

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792

    Article  PubMed  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  CAS  PubMed  Google Scholar 

  • Lacombe S, Nagasaki H, Santi C, Duval D, Piégu B, Bangratz M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C, Panaud O, Karlowski WM, Sato Y, Echeverria M (2008) Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC Plant Biol 8:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Brant E, Budak H, Zhang B (2021a) CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 22:253–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chu W, Gill RA, Sang S, Shi Y, Hu X, Yang Y, Zaman QU, Zhang B (2023) Computational tools and resources for CRISPR/Cas genome editing. Gen Proteomics Bioinform 21:108–126

    Article  Google Scholar 

  • Li DQ, Wu XB, Wang HF, Feng X, Yan SJ, Wu SY, Liu JX, Yao XF, Bai AN, Zhao H, Song XF, Guo L, Zhang SY, Liu CM (2021b) Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol Plant 14:1343–1361

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li J, Chen J, Yan L, Xia L (2020) Precise modifications of both exogenous and endogenous genes in rice by prime editing. Mol Plant 13:671–674

    Article  CAS  PubMed  Google Scholar 

  • Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y (2014) Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46:398–404

    Article  CAS  PubMed  Google Scholar 

  • Liang WH, Shang F, Lin QT, Lou C, Zhang J (2014) Tillering and panicle branching genes in rice. Gene 537:1–5

    Article  CAS  PubMed  Google Scholar 

  • Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Périn C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wu X, Yao X, Yu R, Larkin PJ, Liu CM (2018) Mutations in the DNA demethylase. Proc Natl Acad Sci U S A 115:11327–11332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S, Ma W, She M (2021) Application of CRISPR/Cas9 in crop quality improvement. Int J Mol Sci 22

  • Liu T, Zhang X, Li K, Yao Q, Zhong D, Deng Q, Lu Y (2023) Large-scale genome editing in plants: approaches, applications, and future perspectives. Current Opinion Biotechnol 79:102875

    Article  CAS  Google Scholar 

  • Liu W, Wang X (2019) Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 20:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Chen D, Wu X, Huang D, Chen L, Li L, Deng X, Xu Q (2014) Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15:695

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu K, Wu B, Wang J, Zhu W, Nie H, Qian J, Huang W, Fang Z (2018) Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J 16:1710–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Tian S, Liao H, Zhang J, Yang X, Labavitch JM, Chen W (2013) Analysis of metal element distributions in rice (Oryza sativa L.) seeds and relocation during germination based on X-ray fluorescence imaging of Zn, Fe, K, Ca, and Mn. PLoS One 8:e57360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu C, Yang Z (2022) Genetic and molecular factors in determining grain number per panicle of rice. Front Plant Sci 13:964246

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Ye X, Guo R, Huang J, Wang W, Tang J, Tan L, Zhu JK, Chu C, Qian Y (2017) Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol Plant 10:1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Han B (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmuda Binte M, Shao G, Lv Y, Ahmad S, Wei X, Tang AS (2020) Base editing: the ever expanding clustered regularly interspaced short palindromic repeats (CRISPR) tool kit for precise genome editing in plants. Genes 11

  • Makarov MV, Hayat F, Graves B, Sonavane M, Salter EA, Wierzbicki A, Gassman NR, Migaud ME (2021) Chemical and biochemical reactivity of the reduced forms of nicotinamide riboside. ACS Chem Biol 16:604–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao T, Zhu M, Sheng Z, Shao G, Jiao G, Mawia AM, Ahmad S, Xie L, Tang S, Wei X, Hu S, Hu P (2021) Effects of grain shape genes editing on appearance quality of erect-panicle Geng/Japonica rice. Rice (N Y) 14:74

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J (2017) Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant 10:1238–1241

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Yang Z, Zhang D, Wang Y, Xu M, Zhou L, Wang J, Wu S, Yao Y, Du X, Gu F, Gong Z, Gu M, Liang G, Zhou Y (2018) Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnol J 17(3):650–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyle RL, Carvalhais LC, Pretorius LS, Nowak E, Subramaniam G, Dalton-Morgan J, Schenk PM (2017) An optimized transient dual luciferase assay for quantifying microrna directed repression of targeted sequences. Front Plant Sci 8:1631

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M (2012) Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol 158:1208–1219

    Article  CAS  PubMed  Google Scholar 

  • Nanda S, Yuan SY, Lai FX, Wang WX, Fu Q, Wan PJ (2020) Identification and analysis of miRNAs in IR56 rice in response to BPH infestations of different virulence levels. Sci Rep 10:19093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasti RA, Voytas DF (2021) Attaining the promise of plant gene editing at scale. Proc Natl Acad Sci U S A 118

  • Nizolli O, de Oliveira VF, da Maia LC, Pegoraro C, de Oliveira AC (2023) Genome editing in rice: new paths for an old crop. CABI Reviews

    Google Scholar 

  • Öztürk Gökçe ZN, Aksoy E, Bakhsh A, Demirel U, Çalışkan EM (2021) Combined drought and heat stresses trigger different sets of miRNAs in contrasting potato cultivars. Funct Integr Genomics 21:489–502

    Article  PubMed  Google Scholar 

  • Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP (2020) Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 15:e0230958

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul S, Gayen D, Datta SK, Datta K (2016) Analysis of high iron rice lines reveals new miRNAs that target iron transporters in roots. J Exp Bot 67:5811–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Teotia S, Tang G, Zhao Q (2019) MicroRNAs meet with quantitative trait loci: small powerful players in regulating quantitative yield traits in rice. Wiley Interdisciplin Rev: RNA 10(6):e1556

    Article  Google Scholar 

  • Peng T, Sun H, Du Y, Zhang J, Li J, Liu Y, Zhao Y, Zhao Q (2013) Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One 8:e54148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera I, Seneweera S, Hirotsu N (2018) Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice (N Y) 11:4

    Article  PubMed  Google Scholar 

  • Phi NB, Phuong NDN, Dat VHX, Chau NNB, Quoc NB (2021) Expression profiles of OsNramp6 transcript variants involving in Magnaporthe oryzae resistance and non-resistance of Vietnamese rice cultivars. Eur J Plant Pathol 161:907–916

    Article  CAS  Google Scholar 

  • Pradhan S, Verma S, Chakraborty A, Bhatia S (2021) Identification and molecular characterization of miRNAs and their target genes associated with seed development through small RNA sequencing in chickpea. Funct Integr Genomics 21:283–298

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122:1439–1449

    Article  PubMed  Google Scholar 

  • Qu L, Lin L-B, Xue H-W (2019) Rice miR394 suppresses leaf inclination through targeting an F-box gene, LEAF INCLINATION 4. J Integr Plant Biol 61(4):406–416

    Article  CAS  PubMed  Google Scholar 

  • Rahil Shahzad SJ, Ahmad S, Nisar A, Amina Z, Saleem S, Iqbal MZ, Atif RM, Wang X (2021a) Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: current and future perspectives. Saudi J Biol Sci 28:2323–2341

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahil Shahzad SJ, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W (2021b) Biofortification of cereals and pulses using new breeding techniques: current and future perspectives. Front Plant Sci 8

  • Ram H, Gandass N, Sharma A, Singh A, Sonah H, Deshmukh R, Pandey AK, Sharma TR (2020) Spatio-temporal distribution of micronutrients in rice grains and its regulation. Crit Rev Biotechnol 40:490–507

    Article  CAS  PubMed  Google Scholar 

  • Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Imran Arshad HM, Hameed MK, Khan MS, Joyia FA (2019) Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20

  • Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L, Ren D, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z (2020) Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol 227:629–640

    Article  CAS  PubMed  Google Scholar 

  • Shakeel Ahmad RS, Jamil S, Tabassum J, Chaudhary MAM, Atif RM, Iqbal MM, Monsur MB, Lv Y, Sheng Z, Ju L, Wei X, Hu P, Tang S (2021b) Chapter 31 - regulatory aspects, risk assessment, and toxicity associated with RNAi and CRISPR methods. Elsevier, pp 687–721

    Google Scholar 

  • Shakeel Ahmad XW, Sheng Z, Hu P, Tang S (2020) CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects. Brief Funct Genomics 19(1):26–39

    Article  PubMed  Google Scholar 

  • Shakeel Ahmad ZS, Jalal RS, Tabassum J, Ahmed FK, Hu S, Shao G, Wei X, Abd-Elsalam KA, Hu P, Tang S (2021a) Chapter 33 - CRISPR–Cas technology towards improvement of abiotic stress tolerance in plants. Elsevier

    Google Scholar 

  • Shang XL, Xie RR, Tian H, Wang QL, Guo FQ (2016) Putative zeatin O-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. J Integr Plant Biol 58:627–641

    Article  CAS  PubMed  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Sreenivasulu N, Prasad M (2022) Potential of underutilized crops to introduce the nutritional diversity and achieve zero hunger. Funct Integr Genomics 22:1459–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci 99(13):9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukegawa S, Toki S, Saika H (2022) Genome editing technology and its application to metabolic engineering in rice. Rice (N Y) 15:21

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Xu XH, Li Y, Xie L, He Y, Li W, Lu X, Sun H, Xie X (2020) OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol 226:823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suozhen Hui HL, Mawia AM, Zhou L, Cai J, Ahmad S, Lai C, Wang J, Jiao G, Xie L, Shao G, Sheng Z, Tang S, Wang J, Wei X, Hu S, Hu P (2022) Production of aromatic three-line hybrid rice using novel alleles of BADH2. Plant Biotechnol J 20:59–74

    Article  PubMed  Google Scholar 

  • Tabassum J, Ahmad S, Hussain B, Mawia AM, Zeb A, Ju L (2021) Applications and potential of genome-editing systems in rice improvement: current and future perspectives. Agronomy 11(7):1359

    Article  CAS  Google Scholar 

  • Tian P, Liu J, Mou C, Shi C, Zhang H, Zhao Z, Lin Q, Wang J, Wang J, Zhang X, Guo X, Cheng Z, Zhu S, Ren Y, Lei C, Wang H, Wan J (2018) GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. J Integ Plant Biol 61(11):1171–1185

    Article  Google Scholar 

  • Ting Mao MZ, Sheng Z, Shao G, Jiao G, Mawia AM, Ahmad S, Xie L, Tang S, Wei X, Hu S, Hu P (2021) Effects of grain shape genes editing on appearance quality of erect-panicle Geng/Japonica rice. Springer open

    Google Scholar 

  • Tong A, Yuan Q, Wang S, Peng J, Lu Y, Zheng H, Lin L, Chen H, Gong Y, Chen J, Yan F (2017) Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J Exp Bot 68:4357–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Um T, Choi J, Park T, Chung PJ, Jung SE, Shim JS, Kim YS, Choi IY, Park SC, Oh SJ, Seo JS, Kim JK (2022) Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant Direct 6:e374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Reynolds MP, Salse J (2014) Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor Appl Genet 127:1463–1489

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B (2019) The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol 180:2077–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J (2017) Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29:697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Li S, Liu Q, Wu K, Zhang J, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Sun S, Guo R, Liao W, Shou H (2021) Transcriptomic profiling of Fe-responsive lncRNAs and their regulatory mechanism in rice. Genes (Basel) 12

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63:5903–5918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen Ju, Wang L, Gao G, Zhang Q, He Y (2018) GL3.3 , a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice. Mol Plant 11(5):754–756

    Article  CAS  PubMed  Google Scholar 

  • Xia K, Ou X, Tang H, Wang R, Wu P, Jia Y, Wei X, Xu X, Kang S-H, Kim S-K, Zhang M (2015) Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol 208(3):790–802

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wang Y, Yu Y, Duan J, Liao Z, Xiong G, Meng X, Liu G, Qian Q, Li J (2012) Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun 3:750

    Article  PubMed  Google Scholar 

  • Yan P, Zhu Y, Wang Y, Ma F, Lan D, Niu F, Dong S, Zhang X, Hu J, Liu S, Guo T, Xin X, Zhang S, Yang J, Cao L, Luo X (2022) A new RING finger protein, PLANT ARCHITECTURE and GRAIN NUMBER 1, affects plant architecture and grain yield in rice. Int J Mol Sci 23:824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S, Chu C, Hu S, Song X, Cao X (2019) Fine-tuning of MiR528 accumulation modulates flowering time in rice. Mol Plant 12:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Hui S, Lv Y, Zhang M, Chen D, Tian J, Zhang H, Liu H, Cao J, Xie W, Wu C, Wang S, Yuan M (2022) miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. Mol Plant 15:671–688

    Article  CAS  PubMed  Google Scholar 

  • Yoo MJ, Albert VA, Soltis PS, Soltis DE (2006) Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants. BMC Plant Biol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue E, Cao H, Liu B (2020) A potential genetic editing target for drought and salinity stress tolerance in. Plants (Basel) 9(10):1337

    Article  CAS  PubMed  Google Scholar 

  • Yue E, Liu Z, Li C, Li Y, Liu Q, Xu JH (2017) Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). Plant Cell Rep 36:1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Yuyu C, Aike Z, Pao X, Xiaoxia W, Yongrun C, Beifang W, Yue Z, Liaqat S, Shihua C, Liyong C, Yingxin Z (2020) Effects of GS3 and GL3.1 for grain size editing by CRISPR/Cas9 in rice. Rice Sci 27(5):405–413

    Article  Google Scholar 

  • Zafar K, Sedeek KEM, Rao GS, Khan MZ, Amin I, Kamel R, Mukhtar Z, Zafar M, Mansoor S, Mahfouz MM (2020) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front Genome Ed 2:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zegeye WA, Tsegaw M, Zhang Y, Cao L (2022) CRISPR-based genome editing: advancements and opportunities for rice improvement. Int J Mol Sci 23(8):4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Zhang X, Ding M, Zhu Y (2019) Integrated analyses of miRNAome and transcriptome reveal zinc deficiency responses in rice seedlings. BMC Plant Biol 19:585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Liu X, Zhou Z, Li D, Zhao X, Zhu L, Luo Y, Hu S (2018) Identification of a G2-like transcription factor, OsPHL3, functions as a negative regulator of flowering in rice by co-expression and reverse genetic analysis. BMC Plant Biol 18:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Yan J, Gou F, Mao Y, Tang G, Botella JR, Zhu JK (2017) Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A 114:5277–5282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31:848–852

    Article  CAS  PubMed  Google Scholar 

  • Zhao DS, Li QF, Zhang CQ, Zhang C, Yang QQ, Pan LX, Ren XY, Lu J, Gu MH, Liu QQ (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wen H, Teotia S, Du Y, Zhang J, Li J, Sun H, Tang G, Peng T, Zhao Q (2017) Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC Plant Biol 17:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X, Xie C (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z-X, Feng Q, Cao X-L, Zhu Y, Wang H, Chandran V, Fan J, Zhao J-Q, Pu M, Li Y, Wang W-M (2020) Osa-miR167d facilitates infection of Magnaporthe oryzae in rice. J Integ Plant Biol 62(5):702–715

    Article  CAS  Google Scholar 

  • Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microrna function and regulation in rice. Front Plant Sci 8:1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Li Z, Xiao G, Zhai M, Pan X, Huang R, Zhang H (2020) CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice. J Exp Bot 71:1160–1170

    CAS  PubMed  Google Scholar 

  • Zhou J, Zhang R, Jia X, Tang X, Guo Y, Yang H, Zheng X, Qian Q, Qi Y, Zhang Y (2022) CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. Plant Biotechnol J 20(2):310–322

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9:149

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

HR would like acknowledge the funding received from Department of Biotechnology (DBT), Govt. of India (Grant no. BT/PR39021/AGIII/103/1226/2020), and Science and Engineering Research Board (SERB), Govt. of India (Grant no. SRG/2021/001495), and Core Research Grant from National Institute of Plant Genome Research (NIPGR), India. BY and AM acknowledge the Council of Scientific and Industrial Research (CSIR), Govt. of India for their research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

HR and MKM conceived and supervised the study. BY and AM performed most of the literature review and wrote the first draft. KP helped in the collection of literature. HR and MKM revised and edited the manuscript.

Corresponding authors

Correspondence to Mukesh Kumar Meena or Hasthi Ram.

Ethics declarations

Ethics approval

Not applicable

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Banita Yadav and Ashis Majhi contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, B., Majhi, A., Phagna, K. et al. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 23, 317 (2023). https://doi.org/10.1007/s10142-023-01244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01244-4

Keywords

Navigation