Skip to main content

Advertisement

Log in

An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Genome editing is a useful, adaptable, and favored technique for both functional genomics and crop enhancement. Over the years, rapidly evolving genome editing technologies, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas), transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs), have shown broad application prospects in gene function research and improvement of critical agronomic traits in many crops. These technologies have also opened up opportunities for plant breeding. These techniques provide excellent chances for the quick modification of crops and the advancement of plant science in the future. The current review describes various genome editing techniques and how they function, particularly CRISPR/Cas9 systems, which can contribute significantly to the most accurate characterization of genomic rearrangement and plant gene functions as well as the enhancement of critical traits in field crops. To accelerate the use of gene-editing technologies for crop enhancement, the speed editing strategy of gene-family members was designed. As it permits genome editing in numerous biological systems, the CRISPR technology provides a valuable edge in this regard that particularly captures the attention of scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Adapted from Zaidi et al. (2017) © 2017. Reproduced with the permission of Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data is available in the manuscript.

References

  • Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D, Sharma S (2019) Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci 116(42):20959–20968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal G, Kudapa H, Ramalingam A, Choudhary D, Sinha P, Garg V, Singh VK, Patil GB, Pandey MK, Nguyen HT, Guo B (2020) Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 20:739–761

    CAS  PubMed  Google Scholar 

  • Agudelo D, Carter S, Velimirovic M, Duringer A, Rivest JF, Levesque S, Loehr J, Mouchiroud M, Cyr D, Waters PJ, Laplante M (2020) Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9. Genome Res 30(1):107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmar S, Saeed S, Khan MH, Ullah Khan S, Mora-Poblete F, Kamran M, Faheem A, Maqsood A, Rauf M, Saleem S, Hong WJ (2020) A revolution toward gene-editing technology and its application to crop improvement. Int J Mol Sci 21(16):5665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali I, Mahmood T (2015) Identification and analysis of regulatory elements in the germin and germin-like proteins family promoters in rice. Turk J Bot 39(3):389–400

    CAS  Google Scholar 

  • Ali I, Sardar Z, Rasheed A, Mahmood T (2015) Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. J Theor Biol 376:1–7

    CAS  PubMed  Google Scholar 

  • Ali I, Sher H, Ali A, Hussain S, Ullah Z (2022a) Simplified floral dip transformation method of Arabidopsis thaliana. J Microbiol Methods 197:106492

    CAS  PubMed  Google Scholar 

  • Ali I, Sher H, Ullah Z, Ali A, Iqbal J, Yang WC (2022b) The poly (A) polymerase PAPS1 mediates pollen maturation by regulating sperm cell differentiation in plants. Plant Direct 6(5):e397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali I, Salah KB, Sher H, Ali H, Ullah Z, Ali A, Alam N, Shah SA, Iqbal J, Ilyas M, Al-Quwaie DA (2022c) Drought stress enhances the efficiency of floral dip method of Agrobacterium-mediated transformation in Arabidopsis thaliana. Braz J Biol 84:e259326.https://doi.org/10.1590/1519-6984.259326

  • Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD, Settle AH (2018) NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol 19(1):1–25

    Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20(3):145–149

    CAS  PubMed  Google Scholar 

  • Arroyo-Olarte RD, Bravo Rodríguez R, Morales-Ríos E (2021) Genome editing in bacteria: CRISPR-Cas and beyond. Microorganisms 9(4):844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atta MI, Zehra SS, Dai DQ, Ali H, Naveed K, Ali I, Sarwar M, Ali B, Iqbal R, Bawazeer S, Abdel-Hameed UK (2022) Amassing of heavy metals in soils, vegetables and crop plants irrigated with wastewater: health risk assessment of heavy metals in Dera Ghazi Khan, Punjab, Pakistan. Front Plant Sci 13:1080635. https://doi.org/10.3389/fpls.2022.1080635

    Article  PubMed  Google Scholar 

  • Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beying N, Schmidt C, Pacher M, Houben A, Puchta H (2020) CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat Plants 6(6):638–645

    CAS  PubMed  Google Scholar 

  • Bin Moon SU, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, Kim SH, Yoo K, Kim D, Ko JH, Kim YS (2018) Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat Commun 9(1):3651

    PubMed  PubMed Central  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Bohm A, Miller JC, Morgan RD, Stoddard BL (2018) Engineering altered protein–DNA recognition specificity. Nucleic Acids Res 46(10):4845–4871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler JR, Tector AJ (2017) CRISPR genome-editing: a medical revolution. J Thorac Cardiovasc Surg 153(2):488–491

    PubMed  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360(6393):1126–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carabias A, Fuglsang A, Temperini P, Pape T, Sofos N, Stella S, Erlendsson S, Montoya G (2021) Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3. Nat Commun 12(1):4476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA with fingers and TALENs. Molecular Therapy-Nucleic Acids 1(1):e3

    PubMed  PubMed Central  Google Scholar 

  • Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1(3):1329–1341

    CAS  PubMed  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550(7676):407–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho BK (2018) High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth Biol 7(4):1085–1094

    CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig W, Tepfer M, Degrassi G, Ripandelli D (2008) An overview of general features of risk assessments of genetically modified crops. Euphytica 164:853–880

    Google Scholar 

  • Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A (2017) A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Science Advances 3(8):eaao0027

    PubMed  PubMed Central  Google Scholar 

  • Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR (2015) Small molecule–triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 11(5):316–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33(18):5978–5990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111(12):4632–4637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF III (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9(8):805–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Xu WT, Huang KL, Guo MZ, Luo YB (2018) Risk analysis for genome editing-derived food safety in China. Food Control 84:128–137

    Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L (2019) PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol 16(4):504–517

    PubMed  Google Scholar 

  • Gunarathne AN, Lee KH (2019) Environmental and managerial information for cleaner production strategies: an environmental management development perspective. J Clean Prod 237:117849

    Google Scholar 

  • Haq I, Binjawhar DN, Ullah Z, Ali A, Sher H, Ali I (2022) Wild vicia species possess a drought tolerance system for faba bean improvement. Genes 13(10):1877

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362(6416):839–842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123

    CAS  PubMed  Google Scholar 

  • Herai RH (2019) Avoiding the Off-Target Effects of CRISPR/Cas9 System Is Still a Challenging Accomplishment for Genetic Transformation. Gene 700:176–178

    CAS  PubMed  Google Scholar 

  • Ishizaki T (2016) CRISPR/Cas9 in rice can induce new mutations in later generations, leading to chimerism and unpredicted segregation of the targeted mutation. Mol Breeding 36(12):165

    Google Scholar 

  • Jardim-Messeder D, Felix-Cordeiro T, Barzilai L, de Souza-Vieira Y, Galhego V, Bastos GA, Valente-Almeida G, Aiube YR, Faria-Reis A, Corrêa RL, Sachetto-Martins G (2021) Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane. Funct Integr Genomics 21:73–99

    CAS  PubMed  Google Scholar 

  • Jeon Y, Choi YH, Jang Y, Yu J, Goo J, Lee G, Jeong YK, Lee SH, Kim IS, Kim JS, Jeong C (2018) Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nat Commun 9(1):2777

    PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1(1):1–3

    Google Scholar 

  • Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8(1):14500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Hager M, Brant E, Budak H (2021) Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Funct Integr Genomics 21:355–366

    PubMed  Google Scholar 

  • Klein M, Eslami-Mossallam B, Arroyo DG, Depken M (2018) Hybridization kinetics explains CRISPR-Cas off-targeting rules. Cell Rep 22(6):1413–1423

    CAS  PubMed  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485

    PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo T, Lu-Nguyen NB, Malerba A, Kim E, Kim D, Cappellari O, Cho HY, Dickson G, Popplewell L, Kim JS (2018) Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9. Mol Ther 26(6):1529–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopischke S, Schüßler E, Althoff F, Zachgo S (2017) TALEN-mediated genome-editing approaches in the liverwort Marchantia polymorpha yield high efficiencies for targeted mutagenesis. Plant Methods 13:1–1

    Google Scholar 

  • Kumawat S, Rana N, Bansal R, Vishwakarma G, Mehetre ST, Das BK, Kumar M, Yadav SK, Sonah H, Sharma TR, Deshmukh R (2019) Expanding avenue of fast neutron mediated mutagenesis for crop improvement. Plants 8(6):164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb BM, Mercer AC, Barbas CF III (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41(21):9779–9785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CM, Cradick TJ, Bao G (2016) The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther 24(3):645–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Unver T, Zhang B (2017a) A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L). Scientific reports. 7(1):1

    Google Scholar 

  • Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017b) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics 44(3):175–178

    PubMed  Google Scholar 

  • Li D, Zhou H, Zeng X (2019a) Battling CRISPR-Cas9 off-target genome editing. Cell Biol Toxicol 35:403–406

    CAS  PubMed  Google Scholar 

  • Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B (2019b) Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J 17(5):858–868

    CAS  PubMed  Google Scholar 

  • Lin J, Zhang Z, Zhang S, Chen J, Wong KC (2020) CRISPR-net: a recurrent convolutional network quantifies CRISPR off-target activities with mismatches and Indels. Adv Sci 7(13):1903562

    CAS  Google Scholar 

  • Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y (2017) C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 65(2):310–322

    CAS  PubMed  Google Scholar 

  • Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-act systems. Mol Plant 11(2):245–256

    CAS  PubMed  Google Scholar 

  • Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12(8):1006–1014

    CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    PubMed  PubMed Central  Google Scholar 

  • Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24(12):1102–1125

    CAS  PubMed  Google Scholar 

  • Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36(12):3926–3938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minkenberg B, Wheatley M, Yang Y (2017) CRISPR/Cas9-enabled multiplex genome editing and its application. Prog Mol Biol Transl Sci 149:111–132

    CAS  PubMed  Google Scholar 

  • Mishra R, Zhao K (2018) Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports 12:57–68

    Google Scholar 

  • Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42(W1):W401–W407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murtaza G, Ahmed Z, Dai DQ, Iqbal R, Bawazeer S, Usman M, Rizwan M, Iqbal J, Akram MI, Althubiani AS, Tariq A (2022) A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Front Environ Sci 10:2155

    Google Scholar 

  • Murtaza G, Ahmed Z, Eldin SM, Ali I, Usman M, Iqbal R, Rizwan M, Abdel-Hameed UK, Haider AA, Tariq A (2023) Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: a critical review. Separations 10(3):197

    CAS  Google Scholar 

  • Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    CAS  PubMed  Google Scholar 

  • Newton MD, Taylor BJ, Driessen RP, Roos L, Cvetesic N, Allyjaun S, Lenhard B, Cuomo ME, Rueda DS (2019) DNA stretching induces Cas9 off-target activity. Nat Struct Mol Biol 26(3):185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729

    PubMed  Google Scholar 

  • Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O (2015) Crystal structure of Staphylococcus aureus Cas9. Cell 162(5):1113–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA (2014) Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat Struct Mol Biol 21(6):528–534

    PubMed  PubMed Central  Google Scholar 

  • Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F (2016) Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267–W271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papworth M, Kolasinska P, Minczuk M (2006) Designer zinc-finger proteins and their applications. Gene 366(1):27–38

    CAS  PubMed  Google Scholar 

  • Paul B, Montoya G (2020) CRISPR-Cas12a: Functional overview and applications. Biomedical Journal 43(1):8–17

    PubMed  PubMed Central  Google Scholar 

  • Paul B, Montoya G (2020) CRISPR-Cas12a: functional overview and applications. Biom J 43(1):8–17

    Google Scholar 

  • Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Valè G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3

  • Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS (2015) Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol 27:121–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rai KM, Ghose K, Rai A, Singh H, Srivastava R, Mendu V (2019) Genome engineering tools in plant synthetic biology. In: Singh SP, Pandey A, Du G, Kumar S (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 47–73.https://doi.org/10.1016/B978-0-444-64085-7.00003-4

  • Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372

    PubMed  PubMed Central  Google Scholar 

  • Puchta, (2005) The Repair of Double-Strand Breaks in Plants: Mechanisms and Consequences for Genome Evolution. J Exp Bot 56(409):1–14

    CAS  PubMed  Google Scholar 

  • Ren B, Liu L, Li S, Kuang Y, Wang J, Zhang D, Zhou X, Lin H, Zhou H (2019) Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol Plant 12(7):1015–1026

    CAS  PubMed  Google Scholar 

  • Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD, Singh M, Vuong X, Okochi KD, McCaffrey R, Olesiak M, Roy S (2018) Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46(2):792–803

    CAS  PubMed  Google Scholar 

  • Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9:1–21

    Google Scholar 

  • Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D (2007) Zinc finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35(suppl_2):W599–W605

    PubMed  PubMed Central  Google Scholar 

  • Sanfaçon H (2015) Plant translation factors and virus resistance. Viruses 7(7):3392–3419

    PubMed  PubMed Central  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savage DF (2019) Cas14: big advances from small CRISPR proteins. Biochemistry 58(8):1024–1025

    CAS  PubMed  Google Scholar 

  • Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142

    CAS  PubMed  Google Scholar 

  • Schmidt C, Pacher M, Puchta H (2019) Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system. Plant J 98(4):577–589

    CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6(4):1365–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen CC, Hsu MN, Chang CW, Lin MW, Hwu JR, Tu Y, Hu YC (2019) Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation. Nucleic Acids Res 47(3):e13

    PubMed  Google Scholar 

  • Shi DQ, Ali I, Tang J, Yang WC (2017) New insights into 5hmC DNA modification: generation, distribution and function. Front Genet 8:100

    PubMed  PubMed Central  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    CAS  PubMed  Google Scholar 

  • Shrestha A, Khan A, Dey N (2018) Cis–trans engineering: advances and perspectives on customized transcriptional regulation in plants. Mol Plant 11(7):886–898

    CAS  PubMed  Google Scholar 

  • Singh D, Sternberg SH, Fei J, Doudna JA, Ha T (2016) Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun 7(1):12778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30(7):1335–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    CAS  PubMed  Google Scholar 

  • Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol 32:47–53

    CAS  PubMed  Google Scholar 

  • Stemmer M, Thumberger T, del Sol KM, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633

    PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7(1):13274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants 3(3):1–5

    Google Scholar 

  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13(10):e1525996

    PubMed  PubMed Central  Google Scholar 

  • Thakur N, Nigam M, Mann NA, Gupta S, Hussain CM, Shukla SK, Shah AA, Casini R, Elansary HO, Khan SA (2023) Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Funct Integr Genomics 23(1):57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    CAS  PubMed  Google Scholar 

  • Ullah A, Ali I, Noor J, Zeng F, Bawazeer S, Eldin SM, Asghar MA, Javed HH, Saleem K, Ullah S, Ali H (2023) Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. Front Plant Sci 13:1081188

    PubMed  PubMed Central  Google Scholar 

  • Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350

    CAS  PubMed  Google Scholar 

  • Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368(6488):290–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    CAS  PubMed  Google Scholar 

  • Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7:1333

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16(4):844–855

    CAS  PubMed  Google Scholar 

  • Wang J, Meng X, Hu X, Sun T, Li J, Wang K, Yu H (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17(4):709

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Lv S, Liu T, Wei J, Qu S, Lu Y, Zhang J, Oo S, Zhang B, Pan X, Liu H (2020) CRISPR/Cas9 genome editing shows the important role of AZC_2928 gene in nitrogen-fixing bacteria of plants. Funct Integr Genomics 20:657–668

    CAS  PubMed  Google Scholar 

  • Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ (2020) Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun 11(1):3232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Yang Y, Lei H (2019) Progress in the application of CRISPR: from gene to base editing. Med Res Rev 39(2):665–683

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112(11):3570–3575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Tang L, He X, Liu X, Zhou C, Liu J, Ge X, Li J, Liu C, Zhao J, Qu J (2018) SaCas9 requires 5′-NNGRRT-3′ PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J 13(4):1700561

    Google Scholar 

  • Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15(6):713–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Kuang Y, Ren B, Yan D, Yan F, Spetz C, Sun W, Wang G, Zhou X, Zhou H (2021) SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol 22(1):1–5

    Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang Y, Yuan P, Zhou Y, Cai C, Ren Q, Wen D, Chu C, Qi H, Wei W (2014) Complete decoding of TAL effectors for DNA recognition. Cell Res 24(5):628–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yijun G, Zhiming X, Jianing G, Qian Z, Rasheed A, Hussain MI, Ali I, Shuheng Z, Hassan MU, Hashem M, Mostafa YS (2022) The intervention of classical and molecular breeding approaches to enhance flooding stress tolerance in soybean–an review. Front Plant Sci 13:108536

    Google Scholar 

  • Yin H, Song CQ, Suresh S, Kwan SY, Wu Q, Walsh S, Ding J, Bogorad RL, Zhu LJ, Wolfe SA, Koteliansky V (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14(3):311–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zada A, Ali A, Binjawhar DN, Abdel-Hameed UK, Shah AH, Gill SM, Hussain I, Abbas Z, Ullah Z, Sher H, Ali I (2022) Molecular and physiological evaluation of bread wheat (Triticum aestivum L.) genotypes for stay green under drought stress. Genes 13(12):2261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22(7):550–553

    CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107(26):12028–12033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96:445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HX, Zhang Y, Yin H (2019) Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther 27(4):735–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Kang G, Liu X, Zhao S, Yuan S, Li L, Yang Y, Wang F, Zhang X, Yang J (2020) Genome engineering in plant using an efficient CRISPR-xCas9 toolset with an expanded PAM compatibility. Frontiers in Genome Editing 2:618385

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, Chen W, Zhang L (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148:63–70

    PubMed  Google Scholar 

  • Zhu Y, Huang Z (2019) Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Natl Sci Rev 6(3):438–451

    CAS  PubMed  Google Scholar 

  • Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T, Schillberg S, Christou P (2017) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22(1):38–52

    CAS  PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to HEC Islamabad for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

MS, UD, IA and RI designed the study, IA, FR, NM, KS, MU, SH, UZ, SME, and SF analyzed the data and edited the manuscript. All authors approved the final version.

Corresponding authors

Correspondence to Rashid Iqbal or Iftikhar Ali.

Ethics declarations

Ethics approval and consent to participate

The authors declare that all the permissions or licenses were obtained to collect the data and that all study complies with relevant institutional, national, and international guidelines and legislation for research ethics.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufyan, M., Daraz, U., Hyder, S. et al. An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Funct Integr Genomics 23, 119 (2023). https://doi.org/10.1007/s10142-023-01036-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01036-w

Keywords

Navigation