Skip to main content
Log in

Isolation and expression profiles of gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Gibberellins (GAs) are important in the floral regulatory networks of angiosperm plants. Several lines of evidence suggest that GAs also play a pivotal role in conifer male and female cone development. To gain new insights into the GA metabolism pathway in conifer trees and the role of GA metabolism in male and female cone development, we identified GA metabolism genes in Pinus tabuliformis. These included one PtCPS gene, one PtKS gene, one PtKO gene, TWO PtKAO genes, one PtGA20ox gene, two PtGA3ox genes and 12 PtGA2ox genes. According to phylogenetic analysis, the GA biosynthesis pathway evolved after the divergence of mosses from ferns, but the GA-deactivating gene family underwent divided expansion after divergence of the angiosperms from gymnosperms. However, the active sites of all GA metabolism enzymes were conserved during the evolution of land plants. During male and female cone development of P. tabuliformis, the expression of most of the PtGA2ox genes, especially PtGA2ox10, was higher than GA biosynthesis genes. However, the expression of PtKAO1 in cones peaked at a very early developmental stage. The expression pattern of GA metabolism genes indicated that GAs play different roles at the early and late stages of cone development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay J, Bohlmann J, Jones SJ (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cecich RA, Kang H, Chalupka W (1994) Regulation of early flowering in Pinus banksiana. Tree Physiol 14:275–284

    Article  PubMed  Google Scholar 

  • Davidson SE, Smith JJ, Helliwell CA, Poole AT, Reid JB (2004) The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134:1123–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson S, Bohlenius H, Moritz T, Nilsson O (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18:2172–2181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez H, Fraga MF, Bernard P, Revilla MA (2003) Quantification of GA1, GA3, GA4, GA7, GA9, and GA20 in vegetative and male cone buds from juvenile and mature trees of Pinus radiata. Plant Growth Regul 40:185–188

    Article  CAS  Google Scholar 

  • Galvao VC, Horrer D, Kuttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M, Banks JA, Ashikari M, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2007) The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19:3058–3079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou X, Hu WW, Shen L, Lee LY, Tao Z, Han JH, Yu H (2008) Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiol 147:1126–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai WC, Hanada A, Alonso JM, Ecker JR, Swain SM, Yamaguchi S, Kamiya Y, Sun TP (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeling CI, Dullat HK, Yuen M, Ralph SG, Jancsik S, Bohlmann J (2010) Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol 152:1197–1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong L, von Aderkas P, Zaharia I, Abrams SR, Lee T, Woods J (2012) Analysis of phytohormone profiles during male and female cone initiation and early differentiation in long-shoot buds of lodgepole pine. J Plant Growth Regul 31:478–489

    Article  CAS  Google Scholar 

  • Lee DJ, Zeevaart JA (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138:243–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Wang X, Li Y (2011) Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span. PLoS ONE 6:e23544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nakamura R, Kondo R, Shen MH, Ochiai H, Hisamatsu S, Sonoki S (2012) Identification of cytochrome P450 monooxygenase genes from the white-rot fungus Phlebia brevispora. AMB Express 2:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Niu SH, Li Z, Yuan H, Fang P, Chen X, Li W (2013a) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64:3411–3424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niu SH, Li ZX, Yuan HW, Chen XY, Li Y, Li W (2013b) Transcriptome characterisation of Pinus tabuliformis and evolution of genes in the Pinus phylogeny. BMC Genomics 14:263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theissen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia GR, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Pharis RP, Webber JE, Ross SD (1987) The promotion of flowering in forest trees by gibberellin A4/7 and cultural treatments: a review of the possible mechanisms. For Ecol Manag 19:65–84

    Article  CAS  Google Scholar 

  • Plackett AR, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16:568–578

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg O, Almqvist C, Weslien J (2012) Systemic insecticide and gibberellin reduced cone damage and increased flowering in a spruce seed orchard. J Econ Entomol 105:916–922

    Article  CAS  PubMed  Google Scholar 

  • Ross SD, Pharis RP (1987) Control of sex expression in conifers. Plant Growth Regul 6:37–60

    Article  CAS  Google Scholar 

  • Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805

    Article  CAS  Google Scholar 

  • Ross SD, Bollmann MP, Pharis RP, Sweet GB (1984) Gibberellin A4/7 and the promotion of flowering in Pinus radiata effects on partitioning of photoassimilate within the bud during primordia differentiation. Plant Physiol 76:326–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sohpal VK, Dey A, Singh A (2010) MEGA biocentric software for sequence and phylogenetic analysis: a review. Int J Bioinform Res Appl 6:230–240

    Article  PubMed  Google Scholar 

  • Song S, Qi T, Huang H, Xie D (2013) Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol Plant 6:1065–1073

    CAS  PubMed  Google Scholar 

  • Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6:1509–1518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96:4698–4703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    Article  CAS  PubMed  Google Scholar 

  • Valegard K, van Scheltinga AC, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I (1998) Structure of a cephalosporin synthase. Nature 394:805–809

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Hanada A, Yamaguchi S, Kamiya Y, Beers EP (2011) The Arabidopsis Myb genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. Plant J 66:502–515

    Article  CAS  PubMed  Google Scholar 

  • Zimin A, Stevens KA, Crepeau M, Holtz-Morris A, Koriabine M, Mar G, Ais CC, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ et al (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196:875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Zhiling Yang from the College of biological sciences and technology, Beijing Forestry University, for giving helpful remarks and suggestions on the phylogenetic analysis. This work was supported by the National Natural Science Foundation of China (No. 31370657), Program for Changjiang Scholars and Innovative Research Team in University (IRT13047) and The State Forestry Bureau 948 Project (No. 2012-4-40).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig S1

The ML tree base on the active domain of 2ODDs (GIF 26 kb)

High resolution image (TIFF 1220 kb)

Supplementary Fig S2

The amino acid sequence alignment of active region of CPSs and KSs (GIF 244 kb)

High resolution image (TIFF 10352 kb)

Supplementary Fig S3

The amino acid sequence alignment of active region of KOs and KAOs (GIF 78 kb)

High resolution image (TIFF 2877 kb)

Supplementary Fig S4

The amino acid sequence alignment of active region of GA20oxs, GA3oxs and GA2oxs (GIF 250 kb)

High resolution image (TIFF 9861 kb)

Supplementary Fig S5

Samples used for gene expression analysis (GIF 14 kb)

High resolution image (TIFF 1050 kb)

Supplementary Table 1

(PDF 179 kb)

Supplementary Table 2

(PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Yuan, L., Zhang, Y. et al. Isolation and expression profiles of gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis . Funct Integr Genomics 14, 697–705 (2014). https://doi.org/10.1007/s10142-014-0387-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0387-y

Keywords

Navigation