Skip to main content
Log in

Upregulation of transcripts for metabolism in diverse environments is a shared response associated with survival and adaptation of Klebsiella pneumoniae in response to temperature extremes

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae being ubiquitous in nature encounters wide differences in environmental condition. The organism’s abundance in natural water reservoirs exposed to temperature variation forms the basis of its persistence and spread in the soil and other farm produce. In order to investigate the effect of temperature changes on the survival and adaptation of the bacteria, the transcriptional response of K. pneumoniae subjected to low (20 °C) and high (50 °C) temperature shock were executed using Applied Biosystems SOLiD platform. Approximately, 33 and 34 % of protein coding genes expressed in response to 20 and 50 °C, respectively, displayed significant up- or downregulation (p < 0.01). Most of the significantly expressed transcripts mapped to metabolism, membrane transport, and cell motility were downregulated at 50 °C, except for protein folding, sorting, and degradation, suggesting that heat stress causes general downregulation of gene expression together with induction of heat shock proteins. While at 20 °C, the transcripts of carbohydrate, lipid, and amino acid metabolism were highly upregulated. Hypothetical proteins as well as canonical heat and cold shock proteins, viz. grpE, clpX, recA, and deaD were upregulated commonly in response to 20 and 50 °C. Significant upregulation of genes encoding ribosomal proteins at 20 and 50 °C possibly suggest their role in the survival of K. pneumoniae cells under low- and high-temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr Opin Pl Biol 9:180–188

    Article  CAS  Google Scholar 

  • Bukau B (1993) Regulation of the E. coli heat shock response. Mol Microbiol 9:671–680

    Article  CAS  PubMed  Google Scholar 

  • Bukau B (1999) In: Molecular chaperones and folding catalysts—regulation, cellular function and mechanisms. Harwood Academic, Amsterdam, p 690

    Google Scholar 

  • Chen FW, Ioannou YA (1999) Ribosomal proteins in cell proliferation and apoptosis. Int Rev Immunol 18(5–6):429–448

    Article  CAS  PubMed  Google Scholar 

  • Chhabra SR, He Q, Huang KH, Gaucher SP, Alm EJ, He Z, Hadi MZ, Hazen TC, Wall JD, Zhou J, Arkin AP, Singh AK (2006) Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188(5):1817–1828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Connolly L, Yura T, Gross CA (1999) Autoregulation of the heat shock response in prokaryotes. In: Bukau, B. (Ed.), Molecular chaperones and folding catalysts. Regulation, cellular function and mechanism, Harwood Academic, Amsterdam, pp 13–33

  • Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmatic membranes. J Microbiological Methods 52:149

    Article  CAS  Google Scholar 

  • Dunfield PF (2009) Methanotrophy in extreme environments. In: eLS. Wiley, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0021897

  • Gao H, Wang Y, Liu X, Yan T, Wu L, Alm E, Arkin A, Thompson DK, Zhou J (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186(22):7796–7803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gentry DR, Hernandez VJ, Nguyen LH, Jensen DB, Cashel M (1993) Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol 175:7982–7989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Georgopoulos C, Liberek K, Zylicz M, Ang D (1994) Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 209–250

    Google Scholar 

  • Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167

    Article  CAS  PubMed  Google Scholar 

  • Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumf MPH, Buck M (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34:797–827

    CAS  PubMed  Google Scholar 

  • Jones PG, Inouye M (1994) The cold shock response—a hot topic. Mol Microbiol 11:811–818

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Sys Biol 364:1–16

    Google Scholar 

  • Kaan T, Homuth G, Mader U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:3441–3455

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods-Elseveir Science (USA) 25:402–408

    CAS  Google Scholar 

  • Magnusson LU, Farewell A, Nystrom T (2005) ppGpp: A global regulator in Escherichia coli. Trends Microbiol 13(5):236–242

    Article  CAS  PubMed  Google Scholar 

  • Mandelstam J (1963) Protein turnover and its function in economy of cell. Ann New York Acad Sci 102:621

    Article  CAS  Google Scholar 

  • Mendelsohn R, Davies MA, Brauner JW, Schuster HF, Dluhy RA (1989) Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biogeosciences 28:8934

    CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. The EMBO J 18:6934–6949

    Article  CAS  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed Central  PubMed  Google Scholar 

  • Oberto J, Nabti S, Jooste V, Mignot H, Rouviere-Yaniv J (2009) The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 4(2):e4367. doi:10.1371/journal.pone.0004367

    Article  PubMed Central  PubMed  Google Scholar 

  • Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136

    CAS  PubMed  Google Scholar 

  • Phadtare S, Yamanaka K, Inouye M (2000) The cold shock response. In: Storz G, Hengge-Aronis R (eds) The bacterial stress responses. ASM, Washington DC, pp 33–45

    Google Scholar 

  • Plette F, Struvay C, Feller G (2011) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13(8):1924–1933

    Article  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27:3821–3835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segal G, Ron EZ (1998) Regulation of heat-shock response in bacteria. Ann New York Acad Sci 851:147–151

    Article  CAS  Google Scholar 

  • Shamovsky I, Nudler E (2008) New insights into the mechanism of heat shock response activation. Cel Mol Lif Sci 65:855–861

    Article  CAS  Google Scholar 

  • Squires C, Squires CL (1992) The Clp proteins—proteolysis regulators or molecular chaperones? J Bacteriol 174:1081–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185:2009–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas JG, Baneyx F (1998) Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J Bacteriol 180:5165–5172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas JG, Baneyx F (2000) ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells. Mol Microbiol 36(6):1360–1370

    Article  CAS  PubMed  Google Scholar 

  • VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci U S A 87:5589–5593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Schumann U, Liu Y, Prokopchuk O, Steinacker JM (2012) Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity. J App Physiol. doi:10.1152/japplphysiol.00658.2012

    Google Scholar 

  • Weiner J III, Zimmerman CU, Gohlmann HWH, Hermann R (2003) Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res 31(21):6306–6320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willetts NS (1967) Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem J 103:453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yura T, Tobe T, Ito K, Osawa T (1984) Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is indispensable at low temperature. Proc Natl Acad Sci U S A 81(21):6803–6807, PMID: 6387714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the grant of the National Agricultural Innovation Project, Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Maiti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Distribution of differentially expressed genes involved in the identified pathway of Klebsiella pneumoniae at 20 °C (DOCX 111 kb)

Fig. S2

Distribution of differentially expressed genes involved in the identified pathway of Klebsiella pneumoniae at 50 °C (DOCX 126 kb)

Table S1

Representative differentially expressed genes obtained in response to low and high temperature shock (DOCX 19 kb)

Table S2

Real time PCR specific primers used for validation of transcriptome data (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, S., Sen, R., Padhi, S.K. et al. Upregulation of transcripts for metabolism in diverse environments is a shared response associated with survival and adaptation of Klebsiella pneumoniae in response to temperature extremes. Funct Integr Genomics 14, 591–601 (2014). https://doi.org/10.1007/s10142-014-0382-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0382-3

Keywords

Navigation